Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Viruses ; 14(3)2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35336959

RESUMO

Coronaviruses constitute a global threat to the human population; therefore, effective pan-coronavirus antiviral drugs are required to tackle future re-emerging virus outbreaks. Protein kinase CK2 has been suggested as a promising therapeutic target in COVID-19 owing to the in vitro antiviral activity observed after both pharmacologic and genetic inhibition of the enzyme. Here, we explored the putative antiviral effect of the anti-CK2 peptide CIGB-325 on bovine coronavirus (BCoV) infection using different in vitro viral infected cell-based assays. The impact of the peptide on viral mRNA and protein levels was determined by qRT-PCR and Western blot, respectively. Finally, pull-down experiments followed by Western blot and/or mass spectrometry analysis were performed to identify CIGB-325-interacting proteins. We found that CIGB-325 inhibited both the cytopathic effect and the number of plaque-forming units. Accordingly, intracellular viral protein levels were clearly reduced after treatment of BCoV-infected cells, with CIGB-325 determined by immunocytochemistry. Pull-down assay data revealed the physical interaction of CIGB-325 with viral nucleocapsid (N) protein and a group of bona fide CK2 cellular substrates. Our findings evidence in vitro antiviral activity of CIGB-325 against bovine coronavirus as well as some molecular clues that might support such effect. Altogether, data provided here strengthen the rationale of inhibiting CK2 to treat betacoronavirus infections.


Assuntos
Coronavirus Bovino , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Caseína Quinase II/metabolismo , Bovinos , Peptídeos/farmacologia , Fosforilação
2.
Biomedicines ; 11(1)2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36672551

RESUMO

Large cell lung carcinoma (LCLC) is one form of NSCLC that spreads more aggressively than some other forms, and it represents an unmet medical need. Here, we investigated for the first time the effect of the anti-CK2 CIGB-300 peptide in NCI-H460 cells as an LCLC model. NCI-H460 cells were highly sensitive toward CIGB-300 cytotoxicity, reaching a peak of apoptosis at 6 h. Moreover, CIGB-300 slightly impaired the cell cycle of NCI-H460 cells. The CIGB-300 interactomics profile revealed in more than 300 proteins that many of them participated in biological processes relevant in cancer. Interrogation of the CK2 subunits targeting by CIGB-300 indicated the higher binding of the peptide to the CK2α' catalytic subunit by in vivo pull-down assays plus immunoblotting analysis and confocal microscopy. The down-regulation of both phosphorylation and protein levels of the ribonuclear protein S6 (RPS6) was observed 48 h post treatment. Altogether, we have found that NCI-H460 cells are the most CIGB-300-sensitive solid tumor cell line described so far, and also, the findings we provide here uncover novel features linked to CK2 targeting by the CIGB-300 anticancer peptide.

3.
Virol J ; 18(1): 149, 2021 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-34275492

RESUMO

BACKGROUND: The novel coronavirus SARS-CoV-2 is the etiological agent of COVID-19. This virus has become one of the most dangerous in recent times with a very high rate of transmission. At present, several publications show the typical crown-shape of the novel coronavirus grown in cell cultures. However, an integral ultramicroscopy study done directly from clinical specimens has not been published. METHODS: Nasopharyngeal swabs were collected from 12 Cuban individuals, six asymptomatic and RT-PCR negative (negative control) and six others from a COVID-19 symptomatic and RT-PCR positive for SARS CoV-2. Samples were treated with an aldehyde solution and processed by scanning electron microscopy (SEM), confocal microscopy (CM) and, atomic force microscopy. Improvement and segmentation of coronavirus images were performed by a novel mathematical image enhancement algorithm. RESULTS: The images of the negative control sample showed the characteristic healthy microvilli morphology at the apical region of the nasal epithelial cells. As expected, they do not display virus-like structures. The images of the positive sample showed characteristic coronavirus-like particles and evident destruction of microvilli. In some regions, virions budding through the cell membrane were observed. Microvilli destruction could explain the anosmia reported by some patients. Virus-particles emerging from the cell-surface with a variable size ranging from 80 to 400 nm were observed by SEM. Viral antigen was identified in the apical cells zone by CM. CONCLUSIONS: The integral microscopy study showed that SARS-CoV-2 has a similar image to SARS-CoV. The application of several high-resolution microscopy techniques to nasopharyngeal samples awaits future use.


Assuntos
COVID-19/patologia , Nasofaringe/ultraestrutura , SARS-CoV-2/ultraestrutura , Antígenos Virais/metabolismo , COVID-19/diagnóstico , COVID-19/virologia , Células Epiteliais/ultraestrutura , Células Epiteliais/virologia , Humanos , Aumento da Imagem , Microscopia , Microvilosidades/ultraestrutura , Mucosa Nasal/ultraestrutura , Mucosa Nasal/virologia , Nasofaringe/virologia , SARS-CoV-2/isolamento & purificação , Vírion/ultraestrutura
4.
Arch Virol ; 165(3): 593-607, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32016547

RESUMO

The eradication of hepatitis C virus (HCV) infection is a public health priority. Despite the efficiency of treatment with direct-acting antivirals, the high cost of the therapy and the lack of accurate data about the HCV-infected population worldwide constitute important factors hampering this task. Hence, an affordable preventive vaccine is still necessary for reducing transmission and the future disease burden globally. In this work, chimeric proteins (EnvCNS3 and NS3EnvCo) encompassing conserved and immunogenic epitopes from the HCV core, E1, E2 and NS3 proteins were produced in Escherichia coli, and their immunogenicity was evaluated in BALB/c mice. The impact of recombinant HCV E2.680 protein and oligodeoxynucleotide 39M (ODN39M) on the immune response to chimeric proteins was also assessed. Immunization with chimeric proteins mixed with E2.680 enhanced the antibody and cellular response against HCV antigens and chimeric proteins. Interestingly, the combination of NS3EnvCo with E2.680 and ODN39M as adjuvant elicited a potent antibody response characterized by an increase in antibodies of the IgG2a subclass against E2.680, NS3 and chimeric proteins, suggesting the induction of a Th1-type response. Moreover, a cytotoxic T lymphocyte response and a broad response of IFN-γ-secreting cells against HCV antigens were induced with this formulation as well. This T cell response was able to protect vaccinated mice against challenge with a surrogate model based on HCV recombinant vaccinia virus. Overall, the vaccine candidate NS3EnvCo/E2.680/ODN39M might constitute an effective immunogen against HCV with potential for reducing the likelihood of viral persistence.


Assuntos
Hepacivirus/imunologia , Anticorpos Anti-Hepatite C/sangue , Proteínas Recombinantes/imunologia , Sequência de Aminoácidos , Animais , Linfócitos T CD4-Positivos , Clonagem Molecular , Epitopos , Feminino , Regulação da Expressão Gênica/imunologia , Antígenos da Hepatite C/imunologia , Imunidade Celular , Interferon gama/genética , Interferon gama/metabolismo , Interleucina-4/genética , Interleucina-4/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Plasmídeos
6.
Virus Genes ; 53(2): 151-164, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28233195

RESUMO

Chronic infection with HCV is a leading cause of cirrhosis, hepatocellular carcinoma and liver failure. One of the least understood steps in the HCV life cycle is the morphogenesis of new viral particles. HCV infection alters the lipid metabolism and generates a variety of microenvironments in the cell cytoplasm that protect viral proteins and RNA promoting viral replication and assembly. Lipid droplets (LDs) have been proposed to link viral RNA synthesis and virion assembly by physically associating these viral processes. HCV assembly, envelopment, and maturation have been shown to take place at specialized detergent-resistant membranes in the ER, rich in cholesterol and sphingolipids, supporting the synthesis of luminal LDs-containing ApoE. HCV assembly involves a regulated allocation of viral and host factors to viral assembly sites. Then, virus budding takes place through encapsidation of the HCV genome and viral envelopment in the ER. Interaction of ApoE with envelope proteins supports the viral particle acquisition of lipids and maturation. HCV secretion has been suggested to entail the ion channel activity of viral p7, several components of the classical trafficking and autophagy pathways, ESCRT, and exosome-mediated export of viral RNA. Here, we review the most recent advances in virus morphogenesis and the interplay between viral and host factors required for the formation of HCV virions.


Assuntos
Hepacivirus/ultraestrutura , Hepatite C/virologia , Vírion/ultraestrutura , Montagem de Vírus/genética , Genoma Viral , Hepacivirus/genética , Hepatite C/genética , Humanos , Gotículas Lipídicas/metabolismo , RNA Viral/genética , Vírion/genética , Replicação Viral/genética
7.
Viruses ; 8(6)2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27314381

RESUMO

A combination of antiviral drugs known as antiretroviral therapy (ART) has shown effectiveness against the human immunodeficiency virus (HIV). ART has markedly decreased mortality and morbidity among HIV-infected patients, having even reduced HIV transmission. However, an important current disadvantage, resistance development, remains to be solved. Hope is focused on developing drugs against cellular targets. This strategy is expected to prevent the emergence of viral resistance. In this study, using a comparative proteomic approach in MT4 cells treated with an anti-HIV leukocyte extract, we identified vimentin, a molecule forming intermediate filaments in the cell, as a possible target against HIV infection. We demonstrated a strong reduction of an HIV-1 based lentivirus expressing the enhanced green fluorescent protein (eGFP) in vimentin knockdown cells, and a noteworthy decrease of HIV-1 capsid protein antigen (CAp24) in those cells using a multiround infectivity assay. Electron micrographs showed changes in the structure of intermediate filaments when MT4 cells were treated with an anti-HIV leukocyte extract. Changes in the structure of intermediate filaments were also observed in vimentin knockdown MT4 cells. A synthetic peptide derived from a cytoskeleton protein showed potent inhibitory activity on HIV-1 infection, and low cytotoxicity. Our data suggest that vimentin can be a suitable target to inhibit HIV-1.


Assuntos
Descoberta de Drogas , HIV-1/fisiologia , HIV-1/patogenicidade , Interações Hospedeiro-Patógeno , Vimentina/metabolismo , Replicação Viral , Fármacos Anti-HIV/farmacologia , Linhagem Celular , Técnicas de Silenciamento de Genes , Proteína do Núcleo p24 do HIV/análise , Infecções por HIV/tratamento farmacológico , Humanos , Vimentina/antagonistas & inibidores
8.
PLoS One ; 11(1): e0146223, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26731660

RESUMO

Huanglongbing (HLB) constitutes the most destructive disease of citrus worldwide, yet no established efficient management measures exist for it. Brassinosteroids, a family of plant steroidal compounds, are essential for plant growth, development and stress tolerance. As a possible control strategy for HLB, epibrassinolide was applied to as a foliar spray to citrus plants infected with the causal agent of HLB, 'Candidatus Liberibacter asiaticus'. The bacterial titers were reduced after treatment with epibrassinolide under both greenhouse and field conditions but were stronger in the greenhouse. Known defense genes were induced in leaves by epibrassinolide. With the SuperSAGE technology combined with next generation sequencing, induction of genes known to be associated with defense response to bacteria and hormone transduction pathways were identified. The results demonstrate that epibrassinolide may provide a useful tool for the management of HLB.


Assuntos
Brassinosteroides/farmacologia , Citrus/microbiologia , Doenças das Plantas/microbiologia , Rhizobiaceae/efeitos dos fármacos , Citrus/efeitos dos fármacos , Folhas de Planta/microbiologia
9.
Soft Matter ; 10(46): 9260-9, 2014 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-25325399

RESUMO

Growth hormone releasing peptide, GHRP-6, a hexapeptide (His-(D-Trp)-Ala-Trp-(D-Phe)-Lys-NH2, MW = 872.44 Da) that belongs to a class of synthetic growth hormone secretagogues, can stimulate growth hormone secretion from somatotrophs in several species including humans. In the present study, we demonstrate that GHRP-6 dispersed in aqueous solution, at pH 7.0, room temperature of 22 °C, is able to form long nanotubes, which is evidenced by combining small angle X-ray scattering (SAXS), transmission electron microscopy and molecular dynamics simulation results. Such nanotubes possess inner and outer cross-sections equal to 6.7(2) nm and 13.4(5) nm, respectively. The mechanism of peptide self-assembly was determined by molecular dynamics simulations revealing that the peptides self-assemble like amphiphilic molecules in aqueous solution in a partially interdigitated structure. In this case, the position of the positively charged amino terminus is located at the peptide-water interface, whereas the neutral NH2-capped carboxy terminus remains buried at the hydrophobic core. In contrast, the long side chain of Lys-6 stretches out of the hydrophobic core positioning its positive charge near the cylinder surface. The peptide configuration in the nanotube wall comes from the interplay between the hydrophobic interactions of the aromatic side chains of GHRP-6 and the electrostatic repulsion of its cationic charges. On increasing the peptide concentration, the long nanotubes self-arrange in solution displaying a bi-dimensional hexagonal-like packing in the SAXS curves, with a center-to-center distance of ∼15 nm. Further, we also show that the nanostructure formed in solution is quite stable and is preserved following transfer to a solid support.


Assuntos
Nanotubos/química , Oligopeptídeos/química , Sequência de Aminoácidos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Microscopia Eletrônica de Transmissão , Simulação de Dinâmica Molecular , Oligopeptídeos/metabolismo , Água/química
10.
Arch Virol ; 159(7): 1629-40, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24420159

RESUMO

Dengue is currently one of the most important arthropod-borne diseases, causing up to 25,000 deaths annually. There is currently no vaccine to prevent dengue virus infection, which needs a tetravalent vaccine approach. In this work, we describe the cloning and expression in Escherichia coli of envelope domain III-capsid chimeric proteins (DIIIC) of the four dengue serotypes as a tetravalent dengue vaccine candidate that is potentially able to generate humoral and cellular immunity. The recombinant proteins were purified to more than 85 % purity and were recognized by anti-dengue mouse and human sera. Mass spectrometry analysis verified the identity of the proteins and the correct formation of the intracatenary disulfide bond in the domain III region. The chimeric DIIIC proteins were also serotype-specific, and in the presence of oligonucleotides, they formed aggregates that were visible by electron microscopy. These results support the future use of DIIIC recombinant chimeric proteins in preclinical studies in mice for assessing their immunogenicity and efficacy.


Assuntos
Proteínas do Capsídeo/metabolismo , Vacinas contra Dengue , Vírus da Dengue/classificação , Vírus da Dengue/imunologia , Regulação Viral da Expressão Gênica/fisiologia , Proteínas do Envelope Viral/metabolismo , Antígenos Virais/imunologia , Proteínas do Capsídeo/genética , Clonagem Molecular , Vírus da Dengue/genética , Vírus da Dengue/metabolismo , Escherichia coli , Estrutura Terciária de Proteína , Proteínas Recombinantes/imunologia , Sorotipagem , Proteínas do Envelope Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA