Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Eur Arch Psychiatry Clin Neurosci ; 271(8): 1579-1586, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33751207

RESUMO

Glutamatergic neurotransmission dysfunction and the early involvement of the hippocampus have been proposed to be important aspects of the pathophysiology of schizophrenia. Here, we performed proteomic analysis of hippocampus postmortem samples from schizophrenia patients as well as neural cells-neurons and oligodendrocytes-treated with MK-801, an NMDA receptor antagonist. There were similarities in processes such as oxidative stress and apoptotic process when comparing hippocampus samples with MK-801-treated neurons, and in proteins synthesis when comparing hippocampus samples with MK-801-treated oligodendrocytes. This reveals that studying the effects of glutamatergic dysfunction in different neural cells can contribute to a better understanding of what it is observed in schizophrenia patients' postmortem brains.


Assuntos
Hipocampo , Receptores de N-Metil-D-Aspartato , Esquizofrenia , Maleato de Dizocilpina/uso terapêutico , Hipocampo/metabolismo , Humanos , Neurônios , Oligodendroglia , Proteômica , Receptores de N-Metil-D-Aspartato/fisiologia , Esquizofrenia/metabolismo
2.
World J Biol Psychiatry ; 22(4): 271-287, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32602824

RESUMO

OBJECTIVES: Disturbances in the myelin sheath drive disruptions in neural transmission and brain connectivity as seen in schizophrenia. Here, the myelin proteome was characterised in schizophrenia patients and healthy controls to visualise differences in proteomic profiles. METHODS: A liquid chromatography tandem mass spectrometry-based shotgun proteomic analysis was performed of a myelin-enriched fraction of postmortem brain samples from schizophrenia patients (n = 12) and mentally healthy controls (n = 8). In silico pathway analyses were performed on the resulting data. RESULTS: The present characterisation of the human myelinome led to the identification of 480 non-redundant proteins, of which 102 proteins are newly annotated to be associated with the myelinome. Levels of 172 of these proteins were altered between schizophrenia patients and controls. These proteins were mainly associated with glial cell differentiation, metabolism/energy, synaptic vesicle function and neurodegeneration. The hub proteins with the highest degree of connectivity in the network included multiple kinases and synaptic vesicle transport proteins. CONCLUSIONS: Together these findings suggest disruptive effects on synaptic activity and therefore neural transmission and connectivity, consistent with the dysconnectivity hypothesis of schizophrenia. Further studies on these proteins may lead to the identification of potential drug targets related to the synaptic dysconnectivity in schizophrenia and other psychiatric and neurodegenerative disorders.


Assuntos
Proteoma , Esquizofrenia , Encéfalo/metabolismo , Humanos , Bainha de Mielina/metabolismo , Proteoma/metabolismo , Proteômica
3.
J Proteome Res ; 18(12): 4240-4253, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31581776

RESUMO

Schizophrenia is a chronic disease characterized by the impairment of mental functions with a marked social dysfunction. A quantitative proteomic approach using iTRAQ labeling and SRM, applied to the characterization of mitochondria (MIT), crude nuclear fraction (NUC), and cytoplasm (CYT), can allow the observation of dynamic changes in cell compartments providing valuable insights concerning schizophrenia physiopathology. Mass spectrometry analyses of the orbitofrontal cortex from 12 schizophrenia patients and 8 healthy controls identified 655 protein groups in the MIT fraction, 1500 in NUC, and 1591 in CYT. We found 166 groups of proteins dysregulated among all enriched cellular fractions. Through the quantitative proteomic analysis, we detect as the main biological pathways those related to calcium and glutamate imbalance, cell signaling disruption of CREB activation, axon guidance, and proteins involved in the activation of NF-kB signaling along with the increase of complement protein C3. Based on our data analysis, we suggest the activation of NF-kB as a possible pathway that links the deregulation of glutamate, calcium, apoptosis, and the activation of the immune system in schizophrenia patients. All MS data are available in the ProteomeXchange Repository under the identifier PXD015356 and PXD014350.


Assuntos
Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/metabolismo , Esquizofrenia/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Feminino , Humanos , Masculino , Espectrometria de Massas , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , NF-kappa B/metabolismo , Córtex Pré-Frontal/química , Proteômica/métodos , Canal de Ânion 1 Dependente de Voltagem/metabolismo
4.
J Proteome Res ; 16(12): 4481-4494, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28949146

RESUMO

Schizophrenia is a chronic and incurable neuropsychiatric disorder that affects about one percent of the world population. The proteomic characterization of the synaptosome fraction of the orbitofrontal cortex is useful for providing valuable information about the molecular mechanisms of synaptic functions in these patients. Quantitative analyses of synaptic proteins were made with eight paranoid schizophrenia patients and a pool of eight healthy controls free of mental diseases. Label-free and iTRAQ labeling identified a total of 2018 protein groups. Statistical analyses revealed 12 and 55 significantly dysregulated proteins by iTRAQ and label-free, respectively. Quantitative proteome analyses showed an imbalance in the calcium signaling pathway and proteins such as reticulon-1 and cytochrome c, related to endoplasmic reticulum stress and programmed cell death. Also, it was found that there is a significant increase in limbic-system-associated membrane protein and α-calcium/calmodulin-dependent protein kinase II, associated with the regulation of human behavior. Our data contribute to a better understanding about apoptosis as a possible pathophysiological mechanism of this disease as well as neural systems supporting social behavior in schizophrenia. This study also is a joint effort of the Chr 15 C-HPP team and the Human Brain Proteome Project of B/D-HPP. All MS proteomics data are deposited in the ProteomeXchange Repository under PXD006798.


Assuntos
Córtex Pré-Frontal/química , Proteoma/análise , Proteômica/métodos , Esquizofrenia/patologia , Sinaptossomos/química , Estudos de Casos e Controles , Humanos , Espectrometria de Massas , Redes e Vias Metabólicas , Córtex Pré-Frontal/ultraestrutura
5.
Mol Neuropsychiatry ; 3(1): 37-52, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28879200

RESUMO

Schizophrenia (SCZ) is a serious neuropsychiatric disorder that manifests through several symptoms from early adulthood. Numerous studies over the last decades have led to significant advances in increasing our understanding of the factors involved in SCZ. For example, mass spectrometry-based proteomic analysis has provided important insights by uncovering protein dysfunctions inherent to SCZ. Here, we present a comprehensive analysis of the nuclear proteome of postmortem brain tissues from corpus callosum (CC) and anterior temporal lobe (ATL). We show an overview of the role of deregulated nuclear proteins in these two main regions of the brain: the first, mostly composed of glial cells and axons of neurons, and the second, represented mainly by neuronal cell bodies. These samples were collected from SCZ patients in an attempt to characterize the role of the nucleus in the disease process. With the ATL nucleus enrichment, we found 224 proteins present at different levels, and 76 of these were nuclear proteins. In the CC analysis, we identified 119 present at different levels, and 24 of these were nuclear proteins. The differentially expressed nuclear proteins of ATL are mainly associated with the spliceosome, whereas those of the CC region are associated with calcium/calmodulin signaling.

6.
Curr Opin Psychiatry ; 30(3): 171-175, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28230631

RESUMO

PURPOSE OF REVIEW: Schizophrenia is a severe neuropsychiatric disorder with incomplete remission because of negative and cognitive symptoms in a large proportion of patients. Antipsychotic medication is successful in modulating positive symptoms, but only to a lower extent negative symptoms including cognitive dysfunction. Therefore, development of innovative add-on treatment is highly needed. In this review, recent evidence from clinical studies reveals effects of aerobic exercise on cognitive deficits in schizophrenia patients. RECENT FINDINGS: First studies and meta-analyses on aerobic exercise in schizophrenia patients have shown effects on positive, negative, and global symptoms and cognitive domains such as global cognition, working memory, and attention. Underlying neurobiological mechanisms such as neuroplasticity-related synaptogenesis and neurogenesis have been identified in animal studies and possibly mediate effects of aerobic exercise on brain structure and function. SUMMARY: Different aspects of methods (e.g., endurance training versus yoga and Tai Chi), length and dose of the intervention, supervision of patients by sports therapists as well as maintenance of cognitive improvement after cessation of training have been raised by previous studies. However, minimal and most effective dosage of the intervention and mechanisms underlying changes in neuroplasticity need to be answered in future basic and large-scale randomized clinical trials.


Assuntos
Disfunção Cognitiva/reabilitação , Terapia por Exercício/métodos , Avaliação de Processos e Resultados em Cuidados de Saúde , Esquizofrenia/reabilitação , Disfunção Cognitiva/etiologia , Humanos , Esquizofrenia/complicações
7.
Schizophr Res ; 177(1-3): 70-77, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27094720

RESUMO

Schizophrenia is a multifactorial disease in both clinical and molecular terms. Thus, depicting the molecular aspects of the disease will contribute to the understanding of its biochemical mechanisms and consequently may lead to the development of new treatment strategies. The protein phosphorylation/dephosphorylation switch acts as the main mechanism for regulating cellular signaling. Moreover, approximately onethird of human proteins are phosphorylable. Thus, identifying proteins differentially phosphorylated in schizophrenia postmortem brains may improve our understanding of the molecular basis of brain function in this disease. Hence, we quantified the phosphoproteome of corpus callosum samples collected post mortem from schizophrenia patients and healthy controls. We used state-of-the-art, bottom-up shotgun mass spectrometry in a two-dimensional liquid chromatography-tandem mass spectrometry setup in the MSE mode with label-free quantification. We identified 60,634 peptides, belonging to 3283 proteins. Of these, 68 proteins were differentially phosphorylated, and 56 were differentially expressed. These proteins are mostly involved in signaling pathways, such as ephrin B and ciliary neurotrophic factor signaling. The data presented here are novel because this was the very first phosphoproteome analysis of schizophrenia brains. They support the important role of glial cells, especially astrocytes, in schizophrenia and help to further the understanding of the molecular aspects of this disease. Our findings indicate a need for further studies on cell signaling, which might shape the development of treatment strategies.


Assuntos
Corpo Caloso/metabolismo , Proteoma , Esquizofrenia/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Cromatografia Líquida , Doença Crônica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fosforilação , Proteômica , Espectrometria de Massas em Tandem
9.
Eur Arch Psychiatry Clin Neurosci ; 265(7): 601-12, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26232077

RESUMO

Schizophrenia is an incurable and debilitating mental disorder that may affect up to 1% of the world population. Morphological, electrophysiological, and neurophysiological studies suggest that the corpus callosum (CC), which is the largest portion of white matter in the human brain and responsible for inter-hemispheric communication, is altered in schizophrenia patients. Here, we employed mass spectrometry-based proteomics to investigate the molecular underpinnings of schizophrenia. Brain tissue samples were collected postmortem from nine schizophrenia patients and seven controls at the University of Heidelberg, Germany. Because the CC has a signaling role, we collected cytoplasmic (soluble) proteins and submitted them to nano-liquid chromatography-mass spectrometry (nano LC-MS/MS). Proteomes were quantified by label-free spectral counting. We identified 5678 unique peptides that corresponded to 1636 proteins belonging to 1512 protein families. Of those proteins, 65 differed significantly in expression: 28 were upregulated and 37 downregulated. Our data increased significantly the knowledge derived from an earlier proteomic study of the CC. Among the differentially expressed proteins are those associated with cell growth and maintenance, such as neurofilaments and tubulins; cell communication and signaling, such as 14-3-3 proteins; and oligodendrocyte function, such as myelin basic protein and myelin-oligodendrocyte glycoprotein. Additionally, 30 of the differentially expressed proteins were found previously in other proteomic studies in postmortem brains; this overlap in findings validates the present study and indicates that these proteins may be markers consistently associated with schizophrenia. Our findings increase the understanding of schizophrenia pathophysiology and may serve as a foundation for further treatment strategies.


Assuntos
Corpo Caloso/metabolismo , Bainha de Mielina/metabolismo , Proteoma/metabolismo , Esquizofrenia/metabolismo , Transdução de Sinais , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Cromatografia Líquida , Regulação para Baixo , Feminino , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Proteômica , Espectrometria de Massas em Tandem , Regulação para Cima
10.
NPJ Schizophr ; 1: 15034, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27336040

RESUMO

Schizophrenia is a severe psychiatric disorder with multi-factorial characteristics. A number of findings have shown disrupted synaptic connectivity in schizophrenia patients and emerging evidence suggests that this results from dysfunctional oligodendrocytes, the cells responsible for myelinating axons in white matter to promote neuronal conduction. The exact cause of this is not known, although recent imaging and molecular profiling studies of schizophrenia patients have identified changes in white matter tracts connecting multiple brain regions with effects on protein signaling networks involved in the myelination process. Further understanding of oligodendrocyte dysfunction in schizophrenia could lead to identification of novel drug targets for this devastating disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA