Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 11826, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783066

RESUMO

Biological production and outgassing of greenhouse gasses (GHG) in Eastern Boundary Upwelling Systems (EBUS) are vital for fishing productivity and climate regulation. This study examines temporal variability of biogeochemical and oceanographic variables, focusing on dissolved oxygen (DO), nitrate, nitrogen deficit (N deficit), nitrous oxide (N2O) and air-sea N2O flux. This analysis is based on monthly observations from 2000 to 2023 in a region of intense seasonal coastal upwelling off central Chile (36°S). Strong correlations are estimated among N2O concentrations and N deficit in the 30-80 m layer, and N2O air-sea fluxes with the proportion of hypoxic water (4 < DO < 89 µmol L-1) in the water column, suggesting that N2O accumulation and its exchange are mainly associated with partial denitrification. Furthermore, we observe interannual variability in concentrations and inventories in the water column of DO, nitrate, N deficit, as well as air-sea N2O fluxes in both downwelling and upwelling seasons. These variabilities are not associated with El Niño-Southern Oscillation (ENSO) indices but are related to interannual differences in upwelling intensity. The time series reveals significant nitrate removal and N2O accumulation in both mid and bottom layers, occurring at rates of 1.5 µmol L-1 and 2.9 nmol L-1 per decade, respectively. Particularly significant is the increase over the past two decades of air-sea N2O fluxes at a rate of 2.9 µmol m-2 d-1 per decade. These observations suggest that changes in the EBUS, such as intensification of upwelling and the prevalence of hypoxic waters may have implications for N2O emissions and fixed nitrogen loss, potentially influencing coastal productivity and climate.

2.
Environ Microbiol ; 25(7): 1281-1299, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36861371

RESUMO

Dissolved oxygen regulates microbial distribution and nitrogen cycling and, therefore, ocean productivity and Earth's climate. To date, the assembly of microbial communities in relation to oceanographic changes due to El Niño Southern Oscillation (ENSO) remains poorly understood in oxygen minimum zones (OMZ). The Mexican Pacific upwelling system supports high productivity and a permanent OMZ. Here, the spatiotemporal distribution of the prokaryotic community and nitrogen-cycling genes was investigated along a repeated transect subjected to varying oceanographic conditions associated with La Niña in 2018 and El Niño in 2019. The community was more diverse during La Niña and in the aphotic OMZ, dominated by the Subtropical Subsurface water mass, where the highest abundances of nitrogen-cycling genes were found. The largest proportion of the Gulf of California water mass during El Niño provided warmer, more oxygenated, and nutrient-poor waters towards the coast, leading to a significant increase of Synechococcus in the euphotic layer compared with the opposite conditions during La Niña. These findings suggest that prokaryotic assemblages and nitrogen genes are linked to local physicochemical conditions (e.g. light, oxygen, nutrients), but also to oceanographic fluctuations associated with ENSO phases, indicating the crucial role of climate variability in microbial community dynamics in this OMZ.


Assuntos
El Niño Oscilação Sul , Microbiota , Oxigênio , Água , Microbiota/genética
3.
J Environ Manage ; 323: 116294, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36261994

RESUMO

Municipal and industrial wastewater discharges in coastal and marine environments are of major concern due to their high carbon and nitrogen loads and the resulted phenomenon of eutrophication. Bioelectrochemical reactors (BERs) for simultaneous nitrogen and carbon removal have gained attention owing to their cost efficiency and versatility, as well as the possibility of electrochemical enrich specific groups. This study presented a scalable two-chamber BERs using graphite granules as electrode material. BERs were inoculated and operated for 37 days using natural seawater with high concentrations of ammonium and acetate. The BERs demonstrated a maximum current density of 0.9 A m-3 and removal rates of 7.5 mg NH4+-N L-1 d-1 and 99.5 mg L-1 d-1 for total organic carbon (TOC). Removals observed for NH4+-N and TOC were 96.2% and 68.7%, respectively. The results of nutrient removal (i.e., ammonium, nitrate, nitrite and TOC) and microbial characterization (i.e., next-generation sequencing of the 16S rRNA gene and fluorescence in situ hybridization) showed that BERs operated with a poised cathode at -260 mV (vs. Ag/AgCl) significantly enriched nitrifying microorganisms in the anode and denitrifying microorganisms and planctomycetes in the cathode. Interestingly, the electrochemical enrichment did not increase the total number of microorganisms in the formed biofilms but controlled their composition. Thus, this work shows the first successful attempt to electrochemically enrich marine nitrifying and denitrifying microorganisms and presents a technique to accelerate the start-up process of BERs to remove dissolved inorganic nitrogen and total organic carbon from seawater.


Assuntos
Compostos de Amônio , Grafite , Nitrogênio/química , Desnitrificação , Nitrificação , Águas Residuárias , Carbono , Nitratos , Reatores Biológicos , RNA Ribossômico 16S , Nitritos , Hibridização in Situ Fluorescente , Água do Mar
4.
Microorganisms ; 10(6)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35744658

RESUMO

Although crucial for the addition of new nitrogen in marine ecosystems, dinitrogen (N2) fixation remains an understudied process, especially under dark conditions and in polar coastal areas, such as the West Antarctic Peninsula (WAP). New measurements of light and dark N2 fixation rates in parallel with carbon (C) fixation rates, as well as analysis of the genetic marker nifH for diazotrophic organisms, were conducted during the late summer in the coastal waters of Chile Bay, South Shetland Islands, WAP. During six late summers (February 2013 to 2019), Chile Bay was characterized by high NO3− concentrations (~20 µM) and an NH4+ content that remained stable near 0.5 µM. The N:P ratio was approximately 14.1, thus close to that of the Redfield ratio (16:1). The presence of Cluster I and Cluster III nifH gene sequences closely related to Alpha-, Delta- and, to a lesser extent, Gammaproteobacteria, suggests that chemosynthetic and heterotrophic bacteria are primarily responsible for N2 fixation in the bay. Photosynthetic carbon assimilation ranged from 51.18 to 1471 nmol C L−1 d−1, while dark chemosynthesis ranged from 9.24 to 805 nmol C L−1 d−1. N2 fixation rates were higher under dark conditions (up to 45.40 nmol N L−1 d−1) than under light conditions (up to 7.70 nmol N L−1 d−1), possibly contributing more than 37% to new nitrogen-based production (≥2.5 g N m−2 y−1). Of all the environmental factors measured, only PO43- exhibited a significant correlation with C and N2 rates, being negatively correlated (p < 0.05) with dark chemosynthesis and N2 fixation under the light condition, revealing the importance of the N:P ratio for these processes in Chile Bay. This significant contribution of N2 fixation expands the ubiquity and biological potential of these marine chemosynthetic diazotrophs. As such, this process should be considered along with the entire N cycle when further reviewing highly productive Antarctic coastal waters and the diazotrophic potential of the global marine ecosystem.

5.
Front Microbiol ; 13: 821902, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401462

RESUMO

Marine ammonia oxidizers that oxidize ammonium to nitrite are abundant in polar waters, especially during the winter in the deeper mixed-layer of West Antarctic Peninsula (WAP) waters. However, the activity and abundance of ammonia-oxidizers during the summer in surface coastal Antarctic waters remain unclear. In this study, the ammonia-oxidation rates, abundance and identity of ammonia-oxidizing bacteria (AOB) and archaea (AOA) were evaluated in the marine surface layer (to 30 m depth) in Chile Bay (Greenwich Island, WAP) over three consecutive late-summer periods (2017, 2018, and 2019). Ammonia-oxidation rates of 68.31 nmol N L-1 day-1 (2018) and 37.28 nmol N L-1 day-1 (2019) were detected from illuminated 2 m seawater incubations. However, high ammonia-oxidation rates between 267.75 and 109.38 nmol N L-1 day-1 were obtained under the dark condition at 30 m in 2018 and 2019, respectively. During the late-summer sampling periods both stratifying and mixing events occurring in the water column over short timescales (February-March). Metagenomic analysis of seven nitrogen cycle modules revealed the presence of ammonia-oxidizers, such as the Archaea Nitrosopumilus and the Bacteria Nitrosomonas and Nitrosospira, with AOA often being more abundant than AOB. However, quantification of specific amoA gene transcripts showed number of AOB being two orders of magnitude higher than AOA, with Nitrosomonas representing the most transcriptionally active AOB in the surface waters. Additionally, Candidatus Nitrosopelagicus and Nitrosopumilus, phylogenetically related to surface members of the NP-ε and NP-γ clades respectively, were the predominant AOA. Our findings expand the known distribution of ammonium-oxidizers to the marine surface layer, exposing their potential ecological role in supporting the marine Antarctic system during the productive summer periods.

6.
mSphere ; 6(4): e0052521, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34406852

RESUMO

Microbial proton-pumping rhodopsins are considered the simplest strategy among phototrophs to conserve energy from light. Proteorhodopsins are the most studied rhodopsins thus far because of their ubiquitous presence in the ocean, except in Antarctica, where they remain understudied. We analyzed proteorhodopsin abundance and transcriptional activity in the Western Antarctic coastal seawaters. Combining quantitative PCR (qPCR) and metagenomics, the relative abundance of proteorhodopsin-bearing bacteria accounted on average for 17, 3.5, and 29.7% of the bacterial community in Chile Bay (South Shetland Islands) during 2014, 2016, and 2017 summer-autumn, respectively. The abundance of proteorhodopsin-bearing bacteria changed in relation to environmental conditions such as chlorophyll a and temperature. Alphaproteobacteria, Gammaproteobacteria, and Flavobacteriia were the main bacteria that transcribed the proteorhodopsin gene during day and night. Although green light-absorbing proteorhodopsin genes were more abundant than blue-absorbing ones, the latter were transcribed more intensely, resulting in >50% of the proteorhodopsin transcripts during the day and night. Flavobacteriia were the most abundant proteorhodopsin-bearing bacteria in the metagenomes; however, Alphaproteobacteria and Gammaproteobacteria were more represented in the metatranscriptomes, with qPCR quantification suggesting the dominance of the active SAR11 clade. Our results show that proteorhodopsin-bearing bacteria are prevalent in Antarctic coastal waters in late austral summer and early autumn, and their ecological relevance needs to be elucidated to better understand how sunlight energy is used in this marine ecosystem. IMPORTANCE Proteorhodopsin-bearing microorganisms in the Southern Ocean have been overlooked since their discovery in 2000. The present study identify taxonomy and quantify the relative abundance of proteorhodopsin-bearing bacteria and proteorhodopsin gene transcription in the West Antarctic Peninsula's coastal waters. This information is crucial to understand better how sunlight enters this marine environment through alternative ways unrelated to chlorophyll-based strategies. The relative abundance of proteorhodopsin-bearing bacteria seems to be related to environmental parameters (e.g., chlorophyll a, temperature) that change yearly at the coastal water of the West Antarctic Peninsula during the austral late summers and early autumns. Proteorhodopsin-bearing bacteria from Antarctic coastal waters are potentially able to exploit both the green and blue spectrum of sunlight and are a prevalent group during the summer in this polar environment.


Assuntos
Metagenômica/métodos , Microbiota/genética , Processos Fototróficos , Rodopsinas Microbianas/genética , Água do Mar/microbiologia , Alphaproteobacteria/química , Alphaproteobacteria/classificação , Alphaproteobacteria/genética , Regiões Antárticas , Ecossistema , Flavobacteriaceae/química , Flavobacteriaceae/classificação , Flavobacteriaceae/genética , Filogenia , Rodopsina/metabolismo , Rodopsinas Microbianas/análise
7.
Nat Commun ; 12(1): 1604, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33707435

RESUMO

Geochemical and stable isotope measurements in the anoxic marine zone (AMZ) off northern Chile during periods of contrasting oceanographic conditions indicate that microbial processes mediating sulfur and nitrogen cycling exert a significant control on the carbonate chemistry (pH, AT, DIC and pCO2) of this region. Here we show that in 2015, a large isotopic fractionation between DIC and POC, a DIC and N deficit in AMZ waters indicate the predominance of in situ dark carbon fixation by sulfur-driven autotrophic denitrification in addition to anammox. In 2018, however, the fractionation between DIC and POC was significantly lower, while the total alkalinity increased in the low-pH AMZ core, suggesting a predominance of heterotrophic processes. An isotope mass-balance model demonstrates that variations in the rates of sulfur- and nitrogen-mediated carbon fixation in AMZ waters contribute ~7-35% of the POC exported to deeper waters. Thus, dark carbon fixation should be included in assessments of future changes in carbon cycling and carbonate chemistry due to AMZ expansion.

8.
Microorganisms ; 9(1)2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33401391

RESUMO

Current warming in the Western Antarctic Peninsula (WAP) has multiple effects on the marine ecosystem, modifying the trophic web and the nutrient regime. In this study, the effect of decreased surface salinity on the marine microbial community as a consequence of freshening from nearby glaciers was investigated in Chile Bay, Greenwich Island, WAP. In the summer of 2016, samples were collected from glacier ice and transects along the bay for 16S rRNA gene sequencing, while in situ dilution experiments were conducted and analyzed using 16S rRNA gene sequencing and metatranscriptomic analysis. The results reveal that certain common seawater genera, such as Polaribacter, Pseudoalteromonas and HTCC2207, responded positively to decreased salinity in both the bay transect and experiments. The relative abundance of these bacteria slightly decreased, but their functional activity was maintained and increased the over time in the dilution experiments. However, while ice bacteria, such as Flavobacterium and Polaromonas, tolerated the increased salinity after mixing with seawater, their gene expression decreased considerably. We suggest that these bacterial taxa could be defined as sentinels of freshening events in the Antarctic coastal system. Furthermore, these results suggest that a significant portion of the microbial community is resilient and can adapt to disturbances, such as freshening due to the warming effect of climate change in Antarctica.

9.
Sci Total Environ ; 669: 49-61, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30878940

RESUMO

This study investigates the immediate and mid-term effects of the biogeochemical variables input into the Reloncaví fjord (41°40'S; 72°23'O) as a result of the eruption of Calbuco volcano. Reloncaví is an estuarine system supporting one of the largest mussels farming production within Northern Chilean-Patagonia. Field-surveys were conducted immediately after the volcanic eruption (23-30 April 2015), one month (May 2015), and five months posterior to the event (September 2015). Water samples were collected from three stations along the fjord to determine greenhouse gases [GHG: methane (CH4), nitrous oxide (N2O)], nutrients [NO3-, NO2-, PO43-, Si(OH)4, sulphate (SO42-)], and carbonate systems parameters [total pH (pHT), temperature, salinity, dissolved oxygen (O2), and total alkalinity (AT)]. Additionally, the impact of physicochemical changes in the water column on juveniles of the produced Chilean blue mussel, Mytilus chilensis, was also studied. Following the eruption, a large phytoplankton bloom led to an increase in pHT, due to the uptake of dissolved-inorganic carbon in photic waters, potentially associated with the runoff of continental soil covered in volcanic ash. Indeed, high surface SO42- and GHG were observed to be associated with river discharges. No direct evidence of the eruption was observed within the carbonate system. Notwithstanding, a vertical pattern was observed, with an undersaturation of aragonite (ΩAr < 1) both in brackish surface (<3 m) and deep waters (>10 m), and saturated values in subsurface waters (3 to 7 m). Simultaneously, juvenile mussel shells showed maximized length and weight at 4 m depth. Results suggest a localized impact of the volcanic eruption on surface GHG, nutrients and short-term effects on the carbonate system. Optimal conditions for mussel calcification were identified within a subsurface refuge in the fjord. These specific attributes can be integrated into adaptation strategies by the mussel aquaculture industry to confront ocean acidification and changing runoff conditions.


Assuntos
Carbonatos/análise , Monitoramento Ambiental , Gases de Efeito Estufa/análise , Mytilus/fisiologia , Nutrientes/análise , Água do Mar/química , Erupções Vulcânicas/análise , Animais , Aquicultura , Constituição Corporal , Chile , Metano/análise , Óxido Nitroso/análise , Estações do Ano
10.
Sci Total Environ ; 651(Pt 1): 1517-1533, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30360281

RESUMO

Freshwater systems are subjected to multiple anthropogenic stressors and natural disturbances that act as debilitating agents and modifiers of river systems, causing cumulative and synergistic effects that deteriorate their health and result in watershed vulnerability. This study proposes an easy-to-apply spatial method of watershed vulnerability evaluation using Geographic Information Systems (GIS) in the Andalién River watershed, located in the Chilean mediterranean. A watershed vulnerability index (WVI) based on three sub-indices - anthropogenic stressors, environmental fragility and natural disturbances - was developed. To determine the index grouping weights, expert surveys were carried out using the Delphi method. We subsequently normalized and integrated the factors of each sub-index with relative weights. The ranges of each thematic layer were re-classified to establish vulnerability scores. The watershed was divided into three sections: headwaters zone, transfer zone and depositional zone. The watershed vulnerability index showed that 41% of the watershed had very low vulnerability and 42% had medium vulnerability, while only 1% - in the depositional zone - had high vulnerability. A one-way ANOVA was carried out to analyze the vulnerability differences among the three sections of the watershed; it showed significant differences (F (2, 16) = 8.15: p < 0.05). The a posteriori test showed differences between the headwaters and depositional zones (Tukey test, p = 0.005) and between the transfer and depositional zones (Tukey test, p = 0.014). To validate the WVI, water quality was measured at 16 stations in the watershed; there was a significant correlation between vulnerability level and NO2- levels (r = 0.8; p = 0.87; α = 0.05) and pH (r = 0.8; p = 0.80; α = 0.05). The WVI showed the cumulative effects of multiple stressors in the depositional zone of the watershed. This is the first study to evaluate and validate non-regulated watershed vulnerability with GIS using multiple anthropogenic and natural stressors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA