Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 33(6): 065503, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33108780

RESUMO

The effects of shear strain and applied in plane electric field on the electronic properties of monolayer graphene nanoribbons (GNRs) are theoretically investigated. Band structures and the probability densities are calculated within the tight-binding model and the mechanical stresses submitted to the GNRs are taken into account by using the theory of linear elasticity with joint modifications in the elongation of the nearest-neighbor vectors and the modification of the hopping parameters. The energy gaps for specific widths of (semiconducting) armchair nanoribbons are verified also in the presence of either strain or field, whereas zigzag nanoribbons are metallic for any value of strain and exhibit a small gap for any value of field. However, our results demonstrate that when both strain and electric field are combined, a significant energy gap is always observed in the band structure, for any width or edge type of the ribbon. Moreover, the obtained total wave function is asymmetric along the ribbon width due to the applied electric field that pushes the electrons to one side of the ribbon and, under shear strain, a peak at the center of the ribbon in the spatial distribution is also observed owing to the preferable localization around the almost undeformed carbon bonds at ribbon center.

2.
J Phys Condens Matter ; 33(9): 095503, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33232944

RESUMO

The time evolution of a low-energy two-dimensional Gaussian wave packet in ABC-stacked n-layer graphene (ABC-NLG) is investigated. Expectation values of the position (x, y) of center-of-mass and the total probability densities of the wave packet are calculated analytically using the Green's function method. These results are confirmed using an alternative numerical method based on the split-operator technique within the Dirac approach for ABC-NLG, which additionally allows to include external fields and potentials. The main features of the zitterbewegung (trembling motion) of wave packets in graphene are demonstrated and are found to depend not only on the wave packet width and initial pseudospin polarization, but also on the number of layers. Moreover, the analytical and numerical methods proposed here allow to investigate wave packet dynamics in graphene systems with an arbitrary number of layers and arbitrary potential landscapes.

3.
J Phys Condens Matter ; 32(15): 155501, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-31860873

RESUMO

The energy spectrum and local current patterns in graphene quantum dots (QD) are investigated for different geometries in the presence of an external perpendicular magnetic field. Our results demonstrate that, for specific geometries and edge configurations, the QD exhibits vortex and anti-vortex patterns in the local current density, in close analogy to the vortex patterns observed in the probability density current of semiconductor QD, as well as in the order parameter of mesoscopic superconductors.

4.
Phys Rev E ; 95(6-1): 062606, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28709279

RESUMO

Two-dimensional systems of inverse patchy colloids modeled as disks with a central charge and having their surface decorated with oppositely pointlike charged patches are investigated using molecular dynamics simulations. The self-assembly of the patchy colloids leads to diverse ground state configurations ranging from crystalline arrangements of monomers to linear clusters, ramified linear clusters and to percolated configurations. Two structural phase diagrams are constructed: (1) as a function of the net charge and area fraction, and (2) as a function of the net charge and the range of the pair interaction potential. An interesting reentrant percolation transition is obtained as a function of the net charge of the colloids. We identify distinct mechanisms that lead to the percolation transition.

5.
J Phys Condens Matter ; 29(16): 165501, 2017 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-28218615

RESUMO

We present a theoretical study of the one-electron states of a semiconductor-made quantum ring (QR) containing a series of piecewise-constant wells and barriers distributed along the ring circumference. The single quantum well and the superlattice cases are considered in detail. We also investigate how such confining potentials affect the Aharonov-Bohm like oscillations of the energy spectrum and current in the presence of a magnetic field. The model is simple enough so as to allow obtaining various analytical or quasi-analytical results. We show that the well-in-a-ring structure presents enhanced localization features, as well as specific geometrical resonances in its above-barrier spectrum. We stress that the superlattice-in-a-ring structure allows giving a physical meaning to the often used but usually artificial Born-von-Karman periodic conditions, and discuss in detail the formation of energy minibands and minigaps for the circumferential motion, as well as several properties of the superlattice eigenstates in the presence of the magnetic field. We obtain that the Aharonov-Bohm oscillations of below-barrier miniband states are reinforced, owing to the important tunnel coupling between neighbour wells of the superlattice, which permits the electron to move in the ring. Additionally, we analysis a superlattice-like structure made of a regular distribution of ionized impurities placed around the QR, a system that may implement the superlattice in a ring idea. Finally, we consider several random disorder models, in order to study roughness disorder and to tackle the robustness of some results against deviations from the ideally nanostructured ring system.

6.
J Phys Condens Matter ; 28(50): 505501, 2016 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-27758976

RESUMO

We investigate localized states of a quantum ring confinement in monolayer graphene defined by a circular mass-related potential, which can be induced e.g. by interaction with a substrate that breaks the sublattice symmetry, where a circular line defect provides a change in the sign of the induced mass term along the radial direction. Electronic properties are calculated analytically within the Dirac-Weyl approximation in the presence of an external magnetic field. Analytical results are also compared with those obtained by the tight-binding approach. Regardless of its sign, a mass term [Formula: see text] is expected to open a gap for low-energy electrons in Dirac cones in graphene. Both approaches confirm the existence of confined states with energies inside the gap, even when the width of the kink modelling the mass sign transition is infinitely thin. We observe that such energy levels are inversely proportional to the defect line ring radius and independent on the mass kink height. An external magnetic field is demonstrated to lift the valley degeneracy in this system and easily tune the valley index of the ground state in this system, which can be polarized on either K or [Formula: see text] valleys of the Brillouin zone, depending on the magnetic field intensity. Geometrical changes in the defect line shape are considered by assuming an elliptic line with different eccentricities. Our results suggest that any defect line that is closed in a loop, with any geometry, would produce the same qualitative results as the circular ones, as a manifestation of the topologically protected nature of the ring-like states investigated here.

7.
Artigo em Inglês | MEDLINE | ID: mdl-25122303

RESUMO

We report numerical results which show the achievement of net transport of self-propelled particles (SPPs) in the presence of a two-dimensional regular array of convex, either symmetric or asymmetric, rigid obstacles. The repulsive interparticle (soft disks) and particle-obstacle interactions present no alignment rule. We find that SPPs present a vortex-type motion around convex symmetric obstacles even in the absence of hydrodynamic effects. Such a motion is not observed for a single SPP, but is a consequence of the collective motion of SPPs around the obstacles. A steady particle current is spontaneously established in an array of nonsymmetric convex obstacles (which presents no cavity in which particles may be trapped), and in the absence of an external field. Our results are mainly a consequence of the tendency of the self-propelled particles to attach to solid surfaces.


Assuntos
Movimento (Física) , Modelos Teóricos
8.
Artigo em Inglês | MEDLINE | ID: mdl-23410331

RESUMO

The diffusion of a system of ferromagnetic dipoles confined in a quasi-one-dimensional parabolic trap is studied using Brownian dynamics simulations. We show that the dynamics of the system is tunable by an in-plane external homogeneous magnetic field. For a strong applied magnetic field, we find that the mobility of the system, the exponent of diffusion, and the crossover time among different diffusion regimes can be tuned by the orientation of the magnetic field. For weak magnetic fields, the exponent of diffusion in the subdiffusive regime is independent of the orientation of the external field.


Assuntos
Coloides/química , Difusão , Campos Magnéticos , Modelos Químicos , Reologia/métodos , Simulação por Computador , Tamanho da Partícula
9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(5 Pt 1): 051404, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-23004758

RESUMO

We study the structure and phonon spectrum of a two-dimensional bilayer system of classical charged dipoles oriented perpendicular to the plane of the layers for equal density in each layer. This system can be tuned through six different crystalline phases by changing the interlayer separation or the charge and/or dipole moment of the particle. The presence of the charge on the dipole particles is responsible for the nucleation of five staggered phases and a disordered phase which are not found in the magnetic dipole bilayer system. These extra phases are a consequence of the competition between the repulsive Coulomb and the attractive dipole interlayer interaction. We present the phase diagram and determine the order of the phase transitions. The phonon spectrum of the system was calculated within the harmonic approximation, and a nonmonotonic behavior of the phonon spectrum is found as a function of the effective strength of the interparticle interaction. The stability of the different phases is determined.

10.
J Phys Condens Matter ; 24(37): 375301, 2012 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-22890024

RESUMO

A tight-binding model is used to study the energy band of graphene and graphene ribbon under simple shear strain. The ribbon consists of lines of carbon atoms in an armchair or zigzag orientation where a simple shear strain is applied in the x-direction keeping the atomic distances in the y-direction unchanged. Such modification in the lattice gives an energy band that differs in several aspects from the one without any shear and with pure shear. The changes in the spectrum depend on the line displacement of the ribbon, and also on the modified hopping parameter. It is also shown that this simple shear strain tunes the electronic properties of both graphene and graphene ribbon, opening and closing energy gaps for different displacements of the system. The modified density of states is also shown.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA