Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Mol Med (Berl) ; 102(2): 183-195, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38010437

RESUMO

As SARS-CoV-2 continues to produce new variants, the demand for diagnostics and a better understanding of COVID-19 remain key topics in healthcare. Skin manifestations have been widely reported in cases of COVID-19, but the mechanisms and markers of these symptoms are poorly described. In this cross-sectional study, 101 patients (64 COVID-19 positive patients and 37 controls) were enrolled between April and June 2020, during the first wave of COVID-19, in São Paulo, Brazil. Enrolled patients had skin imprints sampled non-invasively using silica plates; plasma samples were also collected. Samples were used for untargeted lipidomics/metabolomics through high-resolution mass spectrometry. We identified 558 molecular ions, with lipids comprising most of them. We found 245 plasma ions that were significant for COVID-19 diagnosis, compared to 61 from the skin imprints. Plasma samples outperformed skin imprints in distinguishing patients with COVID-19 from controls, with F1-scores of 91.9% and 84.3%, respectively. Skin imprints were excellent for assessing disease severity, exhibiting an F1-score of 93.5% when discriminating between patient hospitalization and home care statuses. Specifically, oleamide and linoleamide were the most discriminative biomarkers for identifying hospitalized patients through skin imprinting, and palmitic amides and N-acylethanolamine 18:0 were also identified as significant biomarkers. These observations underscore the importance of primary fatty acid amides and N-acylethanolamines in immunomodulatory processes and metabolic disorders. These findings confirm the potential utility of skin imprinting as a valuable non-invasive sampling method for COVID-19 screening; a method that may also be applied in the evaluation of other medical conditions. KEY MESSAGES: Skin imprints complement plasma in disease metabolomics. The annotated markers have a role in immunomodulation and metabolic diseases. Skin imprints outperformed plasma samples at assessing disease severity. Skin imprints have potential as non-invasive sampling strategy for COVID-19.


Assuntos
COVID-19 , Doenças Metabólicas , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Teste para COVID-19 , Estudos Transversais , Brasil , Metaboloma , Metabolômica/métodos , Biomarcadores , Amidas , Íons
2.
Int J Mol Sci ; 24(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38139364

RESUMO

This study assessed the safety and efficacy of OncoTherad® (MRB-CFI-1) nanoimmunotherapy for non-muscle invasive bladder cancer (NMIBC) patients unresponsive to Bacillus Calmette-Guérin (BCG) and explored its mechanisms of action in a bladder cancer microenvironment. A single-arm phase I/II study was conducted with 44 patients with NMIBC who were unresponsive to BCG treatment. Primary outcomes were pathological complete response (pCR) and relapse-free survival (RFS). Secondary outcomes comprised response duration and therapy safety. Patients' mean age was 65 years; 59.1% of them were refractory, 31.8% relapsed, and 9.1% were intolerant to BCG. Moreover, the pCR rate after 24 months reached 72.7% (95% CI), whereas the mean RFS reached 21.4 months. Mean response duration in the pCR group was 14.3 months. No patient developed muscle-invasive or metastatic disease during treatment. Treatment-related adverse events occurred in 77.3% of patients, mostly grade 1-2 events. OncoTherad® activated the innate immune system through toll-like receptor 4, leading to increased interferon signaling. This activation played a crucial role in activating CX3CR1+ CD8 T cells, decreasing immune checkpoint molecules, and reversing immunosuppression in the bladder microenvironment. OncoTherad® has proved to be a safe and effective therapeutic option for patients with BCG-unresponsive NMIBC, besides showing likely advantages in tumor relapse prevention processes.


Assuntos
Imunoterapia , Neoplasias não Músculo Invasivas da Bexiga , Neoplasias da Bexiga Urinária , Idoso , Humanos , Adjuvantes Imunológicos/uso terapêutico , Administração Intravesical , Vacina BCG/uso terapêutico , Receptor 1 de Quimiocina CX3C , Invasividade Neoplásica , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasias não Músculo Invasivas da Bexiga/terapia , Transdução de Sinais , Receptor 4 Toll-Like/uso terapêutico , Microambiente Tumoral , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Imunoterapia/métodos , Sistemas de Liberação de Fármacos por Nanopartículas
3.
Animals (Basel) ; 13(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37370399

RESUMO

Mast cell tumors (MCTs) are the most common malignant cutaneous tumors in dogs, and they present extremely variable biological behavior. The interaction between RANK, RANK-L, and immune checkpoints is frequently detected in the tumor microenvironment, and, together, they participate in every stage of cancer development. Thus, the aim of this study was to characterize the molecular profiles of PD-L1, CTLA-4, RANK/RANK-L signaling pathway, and IFN-γ in primary tumors and lymph node metastases. Formalin-fixed, paraffin-embedded slides of MCTs and metastatic lymph nodes of ten dogs were submitted to immunohistochemical investigations. The results demonstrated that the tumor microenvironment of the high-grade mast cell tumors showed moderate or intense immunolabeling of all proteins, and the lymph node metastases also showed moderate or intense immunolabeling of checkpoint proteins. In addition, MCTs larger than 3 cm were associated with intensified PD-L1 (p = 0.03) in metastatic lymph nodes and RANK-L (p = 0.049) immunoreactivity in the tumor. Furthermore, dogs with a survival time of less than 6 months showed higher PD-L1 immunoreactivity (p = 0.042). In conclusion, high-grade MCT is associated with an immunosuppressive microenvironment that exhibits elevated RANK/RANK-L signaling and enhanced immune checkpoint immunoreactivity, potentially facilitating intratumorally immune escape. These biomarkers show promise as clinical indicators of disease progression and might response to immunotherapy in dogs with high-grade MCTs, thus emphasizing their importance for guiding treatment decisions and improving outcomes.

4.
J Cancer Res Clin Oncol ; 149(8): 5025-5036, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36322290

RESUMO

INTODUCTION: Bladder cancer is the second most common urinary tract cancer. Above 70% of the occurrence of bladder cancer is superficial (pTis, pTa, and pT1), non-muscle invasive tumor (NMIBC), and the incidence of invasive disease is occasional. Treatments for NMIBC consist of transurethral resection (TUR) and subsequently intravesical immunotherapy with Bacillus Calmette-Guérin (BCG), intending to prevent tumor progression and decrease recurrence. However, 20-30% of these tumors have progression, and 70% have a recurrence after exclusive TUR treatment. The immunomodulator of biological response, OncoTherad®, is an attractive potential to revolutionize cancer therapy. In our previous studies with mice, the results showed that treatment with OncoTherad® reduced 100% of tumor progression in NMIBC through the activation of Toll-Like Receptors' non-canonical pathway. MATERIALS AND METHODS:  In the present study, 36 female C57Bl/6J mice were divided into 6 groups (n = 6/group): Control, Cancer, Cancer + BCG, Cancer + OncoTherad® (MRB-CFI-1), Cancer + P14-16 and Cancer + CFI-1. NMIBC was chemically induced and the treatments were followed for 6 weeks. A week after the last dose of treatment, animals were euthanized, the bladder was collected and routinely processed for immunohistochemical analyses of RANK, RANKL, FOXP3, and PD-1/PD-L1, such as PD-1/PD-L1 western blotting. CONCLUSION: The immunohistochemical results showed that OncoTherad® reduced RANK and RANKL immunoreactivities compared to the cancer group, which indicates a good prognosis. Immunohistochemical and western blotting analyses confirmed that OncoTherad® modulated PD-1/PD-L1 immune checkpoint.


Assuntos
Neoplasias não Músculo Invasivas da Bexiga , Neoplasias da Bexiga Urinária , Feminino , Animais , Camundongos , Receptor de Morte Celular Programada 1 , Antígeno B7-H1 , Vacina BCG/uso terapêutico , Administração Intravesical , Neoplasias da Bexiga Urinária/patologia , Adjuvantes Imunológicos/uso terapêutico , Transdução de Sinais , Recidiva Local de Neoplasia/patologia , Invasividade Neoplásica
5.
Mol Biol Rep ; 49(7): 6931-6943, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35301654

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) is caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It is known that host microRNAs (miRNAs) can be modulated to favor viral infection or to protect the host. Herein, we report preliminary results of a study aiming at identifying differentially expressed plasmatic miRNAs in Brazilian patients with COVID-19. METHODS AND RESULTS: miRNAs were extracted from the plasma of eight patients with COVID-19 (four patients with mild COVID-19 and four patients with severe/critical COVID-19) and four healthy controls. Patients and controls were matched for sex and age. miRNA expression levels were detected using high-throughput sequencing. Differential miRNA expression and enrichment analyses were further evaluated. A total of 18 miRNAs were differentially expressed between patients with COVID-19 and controls. miR-4433b-5p, miR-6780b-3p, miR-6883-3p, miR-320b, miR-7111-3p, miR-4755-3p, miR-320c, and miR-6511a-3p were the most important miRNAs significantly involved in the PI3K/AKT, Wnt/ß-catenin, and STAT3 signaling pathways. Moreover, 42 miRNAs were differentially expressed between severe/critical and mild patients with COVID-19. miR-451a, miR-101-3p, miR-185-5p, miR-30d-5p, miR-25-3p, miR-342-3p, miR-30e-5p, miR-150-5p, miR-15b-5p, and miR-29c-3p were the most important miRNAs significantly involved in the Wnt/ß-catenin, NF-κß, and STAT3 signaling pathways. CONCLUSIONS: If validated by quantitative real-time reverse transcriptase-polymerase chain reaction (RT-PCR) in a larger number of participants, the miRNAs identified in this study might be used as possible biomarkers for the diagnosis and severity of COVID-19.


Assuntos
COVID-19 , MicroRNAs , Brasil/epidemiologia , COVID-19/genética , Perfilação da Expressão Gênica/métodos , Humanos , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/genética , SARS-CoV-2 , beta Catenina/genética
6.
Rev. bras. educ. méd ; 46(3): e125, 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1407374

RESUMO

Abstract: Introduction: Human Anatomy is an essential subject for medical education. In addition to the theoretical content, practice is an irreplaceable way of learning. However, the COVID-19 pandemic brought up new challenges to the teaching of Anatomy. Therefore, new strategies were implemented aiming to adapt the medical curriculum. Experience report: At UNICAMP, Anatomy was taught virtually, through synchronous and asynchronous activities. For practical sessions, teachers and teaching assistants recorded lessons using real anatomical structures. The students had tutoring sessions with content review and quizzes. The anatomy final exams were taken on Google Forms. At the end of each semester, questionnaires were applied so that the students could evaluate the teaching tools. Discussion: The new method had both positive and negative aspects, but it was important to assure the maintenance of the teaching-learning process. All tools were approved by the students and the objectives of the course were achieved with no additional funding. Conclusion: This experience demonstrated that a teaching team consisting of teachers and monitors is of great value in the learning process. Furthermore, it showed that low-cost technology tools are helpful in overcoming adversities. Nevertheless, this model does not replace face-to-face teaching.


Resumo: Introdução: A anatomia humana é uma disciplina indispensável para a formação médica. Além do conteúdo teórico, sabe-se que o aprendizado por meio da prática é insubstituível. Entretanto, a pandemia de Covid-19 impôs desafios ao ensino de anatomia. Por isso, novas estratégias de ensino foram desenvolvidas para adaptar o currículo médico. Relato de experiência: Na Unicamp, o conteúdo de anatomia foi oferecido virtualmente por meio de atividades síncronas e assíncronas. Para as práticas, professores e monitores gravaram aulas com peças anatômicas verdadeiras. Os alunos também tiveram monitorias com revisão de conteúdo e quizzes. As provas finais foram feitas em formulários do Google Forms. Ao fim de cada semestre letivo, aplicaram-se questionários para que os estudantes avaliassem as novas ferramentas de ensino. Discussão: O novo método teve pontos positivos e negativos, mas foi importante para garantir a manutenção do processo de ensino-aprendizagem. Todas as ferramentas foram aprovadas pelos alunos, e atingiram-se os objetivos do curso sem financiamento adicional. Conclusão: Essa experiência demonstrou que a união entre professores e monitores é de grande valia para o processo de ensino-aprendizagem. Além disso, revelou que ferramentas tecnológicas de baixo custo podem ser úteis nesse contexto. Entretanto, esse modelo não substitui o ensino presencial.

7.
Lett Appl Microbiol, v. 75, n. 4, 1010-1020, out. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4409

RESUMO

Numerous studies have attempted to restore the function of the tumour suppressor p53 as an anticancer strategy through gene delivery. However, most studies employed non-bacterial vectors to deliver p53. Various facultative and obligate anaerobic bacteria have been proposed as vectors because of their intrinsic tumour targeting ability and antitumour activity. Salmonella enterica Typhimurium is the most studied bacterial vector in anticancer therapy. We used the previously designed χ11218 strain of S. enterica Typhimurium, displaying regulated delayed lysis, as a vector for delivering p53 to human bladder carcinoma cells, restoring wild-type p53 protein function. We cloned p53 into pYA4545 (containing a eukaryotic expression system) to generate the χ11218 pYA4545p53 strain. Cloning of p53 did not affect the growth or interfere with the invasive and replicative capacity of χ11218 bacteria in tumour cells. Human bladder carcinoma cells (expressing mutated p53) transfected with pYA4545p53 showed a significant increase in the expression of p53 protein. We demonstrated that p53 supplied by χ11218 significantly decreased the viability of human bladder cancer cells in a dose-dependent manner. This study demonstrates the applicability of the attenuated χ11218 strain as a vector for DNA plasmids expressing tumour suppressor genes.

9.
Int J Mol Med ; 47(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33448317

RESUMO

Coronavirus disease 2019 (COVID­19), caused by severe acute respiratory syndrome coronavirus 2 (SARS­CoV­2), was identified in December, 2019 in Wuhan, China. Since then, it has continued to spread rapidly in numerous countries, while the search for effective therapeutic options persists. Coronaviruses, including SARS­CoV­2, are known to suppress and evade the antiviral responses of the host organism mediated by interferon (IFN), a family of cytokines that plays an important role in antiviral defenses associated with innate immunity, and has been used therapeutically for chronic viral diseases and cancer. On the other hand, OncoTherad, a safe and effective immunotherapeutic agent in the treatment of non­muscle invasive bladder cancer (NMIBC), increases IFN signaling and has been shown to be a promising therapeutic approach for COVID­19 in a case report that described the rapid recovery of a 78­year­old patient with NMIBC with comorbidities. The present review discusses the possible synergistic action of OncoTherad with vitamin D, zinc and glutamine, nutrients that have been shown to facilitate immune responses mediated by IFN signaling, as well as the potential of this combination as a therapeutic option for COVID­19.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Glutamina/farmacologia , Glicoproteínas/farmacologia , Fatores Imunológicos/uso terapêutico , Interferons/metabolismo , Fosfatos/farmacologia , Vitamina D/farmacologia , Zinco/farmacologia , Idoso , Antivirais/uso terapêutico , COVID-19/metabolismo , Comorbidade , Sinergismo Farmacológico , Glicoproteínas/uso terapêutico , Humanos , Imunidade Inata/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Masculino , Nanoestruturas , Fosfatos/uso terapêutico , Cálculos da Bexiga Urinária/tratamento farmacológico , Cálculos da Bexiga Urinária/epidemiologia
10.
Anal Chem ; 93(4): 2471-2479, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33471512

RESUMO

COVID-19 is still placing a heavy health and financial burden worldwide. Impairment in patient screening and risk management plays a fundamental role on how governments and authorities are directing resources, planning reopening, as well as sanitary countermeasures, especially in regions where poverty is a major component in the equation. An efficient diagnostic method must be highly accurate, while having a cost-effective profile. We combined a machine learning-based algorithm with mass spectrometry to create an expeditious platform that discriminate COVID-19 in plasma samples within minutes, while also providing tools for risk assessment, to assist healthcare professionals in patient management and decision-making. A cross-sectional study enrolled 815 patients (442 COVID-19, 350 controls and 23 COVID-19 suspicious) from three Brazilian epicenters from April to July 2020. We were able to elect and identify 19 molecules related to the disease's pathophysiology and several discriminating features to patient's health-related outcomes. The method applied for COVID-19 diagnosis showed specificity >96% and sensitivity >83%, and specificity >80% and sensitivity >85% during risk assessment, both from blinded data. Our method introduced a new approach for COVID-19 screening, providing the indirect detection of infection through metabolites and contextualizing the findings with the disease's pathophysiology. The pairwise analysis of biomarkers brought robustness to the model developed using machine learning algorithms, transforming this screening approach in a tool with great potential for real-world application.


Assuntos
COVID-19/diagnóstico , Aprendizado de Máquina , Metabolômica , Adulto , Idoso , Automação , Biomarcadores/metabolismo , Brasil , COVID-19/virologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Medição de Risco , SARS-CoV-2/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA