Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Microorganisms ; 12(5)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38792791

RESUMO

Despite numerous reports of Anaplasmataceae agents in mammals worldwide, few studies have investigated their occurrence in birds. The present study aimed to investigate the occurrence and molecular identity of Anaplasmataceae agents in birds from the Pantanal wetland, Brazil. Blood samples were collected from 93 different species. After DNA extraction, samples positive for the avian ß-actin gene were subjected to both a multiplex quantitative real-time (q)PCR for Anaplasma and Ehrlichia targeting the groEL gene and to a conventional PCR for Anaplasmataceae agents targeting the 16S rRNA gene. As a result, 37 (7.4%) birds were positive for Anaplasma spp. and 4 (0.8%) for Ehrlichia spp. in the qPCR assay; additionally, 13 (2.6%) were positive for Anaplasmataceae agents in the PCR targeting the 16S rRNA gene. The Ehrlichia 16S rRNA sequences detected in Arundinicola leucocephala, Ramphocelus carbo, and Elaenia albiceps were positioned closely to Ehrlichia sp. Magellanica. Ehrlichia dsb sequences detected in Agelasticus cyanopus and Basileuterus flaveolus grouped with Ehrlichia minasensis. The 16S rRNA genotypes detected in Crax fasciolata, Pitangus sulphuratus and Furnarius leucopus grouped with Candidatus Allocryptoplasma. The 23S-5S genotypes detected in C. fasciolata, Basileuterus flaveolus, and Saltator coerulescens were related to Anaplasma phagocytophilum. In conclusion, novel genotypes of Anaplasma, Ehrlichia, and Candidatus Allocryptoplasma were detected in birds from the Pantanal wetland.

2.
Vet Res Commun ; 48(3): 1631-1640, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38443588

RESUMO

Despite the worldwide occurrence of bartonellae in a broad range of mammal species, in which they usually cause a long-lasting erythrocytic bacteremia, few studies reported Bartonella spp. in avian hosts. The present work aimed to investigate the occurrence and molecular identity of Bartonella spp. infecting birds in the Pantanal wetland, central-western Brazil using a multigene approach. For this purpose, blood samples were collected from 517 individuals from 13 avian orders in the states of Mato Grosso and Mato Groso do Sul. DNA was extracted from avian blood and 500/517 (96.7%) samples were positive in a conventional PCR targeting the avian ß-actin gene. Nineteen (3.8%) out of 500 avian blood samples were positive in a qPCR assay for Bartonella spp. based on the nuoG gene. Among 19 avian blood DNA samples positive in the qPCR for Bartonella spp., 12 were also positive in the qPCR for Bartonella based on the 16S-23S RNA Intergenic region (ITS). In the PCR assays performed for molecular characterization, one 16S rRNA, three ribC, and one nuoG sequences were obtained. Based on BLASTn results, while 1 nuoG, 2 ribC, and 2 ITS sequences showed high identity to Bartonella henselae, one 16S rRNA and 2 ITS showed high similarity to Bartonella machadoae in the sampled birds. Bartonella spp. related to B. henselae and B. machadoae were detected, for the first time, in wild birds from the Brazilian Pantanal.


Assuntos
Infecções por Bartonella , Bartonella , Doenças das Aves , Aves , Áreas Alagadas , Animais , Bartonella/genética , Bartonella/isolamento & purificação , Bartonella/classificação , Brasil/epidemiologia , Aves/microbiologia , Doenças das Aves/microbiologia , Doenças das Aves/epidemiologia , Infecções por Bartonella/veterinária , Infecções por Bartonella/epidemiologia , Infecções por Bartonella/microbiologia , Filogenia , Animais Selvagens/microbiologia , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase/veterinária
3.
Microb Ecol ; 86(4): 2838-2846, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37608162

RESUMO

Establishing how environmental gradients and host ecology drive spatial variation in infection rates and diversity of pathogenic organisms is one of the central goals in disease ecology. Here, we identified the predictors of concomitant infection and lineage richness of blood parasites in New Word bird communities. Our multi-level Bayesian models revealed that higher latitudes and elevations played a determinant role in increasing the probability of a bird being co-infected with Leucocytozoon and other haemosporidian parasites. The heterogeneity in both single and co-infection rates was similarly driven by host attributes and temperature, with higher probabilities of infection in heavier migratory host species and at cooler localities. Latitude, elevation, host body mass, migratory behavior, and climate were also predictors of Leucocytozoon lineage richness across the New World avian communities, with decreasing parasite richness at higher elevations, rainy and warmer localities, and in heavier and resident host species. Increased parasite richness was found farther from the equator, confirming a reverse Latitudinal Diversity Gradient pattern for this parasite group. The increased rates of Leucocytozoon co-infection and lineage richness with increased latitude are in opposition with the pervasive assumption that pathogen infection rates and diversity are higher in tropical host communities.


Assuntos
Doenças das Aves , Coinfecção , Haemosporida , Parasitos , Animais , Coinfecção/veterinária , Teorema de Bayes , Altitude , Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , Aves , Prevalência
4.
Microorganisms ; 11(6)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37375033

RESUMO

Plasmodium spp. and some other blood parasites belonging to the order Haemosporida are the focus of many epidemiological studies worldwide. However, haemosporidian parasites from wild animals are largely neglected in scientific research. For example, Polychromophilus parasites, which are exclusive to bats, are described in Europe, Asia, Africa, and Oceania, but little is known about their presence and genetic diversity in the New World. In this study, 224 samples of bats from remaining fragments of the Atlantic Forest and Pantanal biomes, as well as urbanized areas in southern and southeastern Brazil, were analyzed for the presence of haemosporidian parasites by PCR of the mitochondrial gene that encodes cytochrome b (cytb). The PCR fragments of the positive samples were sequenced and analyzed by the Bayesian inference method to reconstruct the phylogenetic relationships between Polychromophilus parasites from bats in Brazil and other countries. Sequences from Brazilian lineages of Polychromophilus were recovered in a clade with sequences from Polychromophilus murinus and close to the one Polychromophilus sequence obtained in Panama, the only available sequence for the American continent. This clade was restricted to bats of the family Vespertilionidae and distinct from Polychromophilus melanipherus, a parasite species mainly found in bats of the family Miniopteridae. The detection of Polychromophilus and the genetic proximity to P. murinus were further confirmed with the amplification of two other genes (clpc and asl). We also found a Haemosporida parasite sequence in a sample of Noctilio albiventris collected in the Pantanal biome, which presents phylogenetic proximity with avian Haemoproteus sequences. Morphological and molecular studies are still needed to conclude and describe the Polychromophilus species in Brazilian Myotis bats in more detail and to confirm Haemoproteus parasites in bats. Nevertheless, these molecular results in Brazilian bats confirm the importance of studying these neglected genera.

5.
Parasitol Res ; 122(9): 2065-2077, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37391644

RESUMO

The Brazilian Amazon supports an extremely diverse avifauna and serves as the diversification center for avian malaria parasites in South America. Construction of hydroelectric dams can drive biodiversity loss by creating islands incapable of sustaining the bird communities found in intact forest sites. Besides anthropogenic actions, the presence of parasites can also influence the dynamics and structure of bird communities. Avian malaria (Plasmodium) and related haemosporidian parasites (Haemoproteus and Leucocytozoon) are a globally distributed group of protozoan parasites recovered from all major bird groups. However, no study to date has analyzed the presence of avian haemosporidian parasites in fragmented areas such as land bridge islands formed during artificial flooding following the construction of hydroelectric dams. The aim of this study is to assess the prevalence and molecular diversity of haemosporidians in bird communities inhabiting artificial islands in the area of the Balbina Hydroelectric Dam. The reservoir area covers 443,700 ha with 3546 islands on the left bank of the Uatumã River known to contain more than 400 bird species. We surveyed haemosporidian infections in blood samples collected from 445 understory birds, belonging to 53 species, 24 families, and 8 orders. Passeriformes represented 95.5% of all analyzed samples. We found a low overall Plasmodium prevalence (2.9%), with 13 positive samples (two Plasmodium elongatum and 11 Plasmodium sp.) belonging to eight lineages. Six of these lineages were previously recorded in the Amazon, whereas two of them are new. Hypocnemis cantator, the Guianan Warbling Antbird, represented 38.5% of all infected individuals, even though it represents only 5.6% of the sampled individuals. Since comparison with Plasmodium prevalence data prior to construction of Balbina is not possible, other studies in artificially flooded areas are imperative to test if anthropogenic flooding may disrupt vector-parasite relationships leading to low Plasmodium prevalence.


Assuntos
Doenças das Aves , Haemosporida , Malária Aviária , Parasitos , Passeriformes , Plasmodium , Humanos , Animais , Parasitos/genética , Malária Aviária/parasitologia , Ilhas , Brasil/epidemiologia , Prevalência , Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , Plasmodium/genética , Haemosporida/genética , Variação Genética
6.
Acta Parasitol ; 68(1): 159-171, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36456776

RESUMO

PURPOSE: The Diplostomidae is a globally distributed family of digeneans that parasitize a wide variety of tetrapod definitive hosts. Recent molecular phylogenetic studies have revealed unknown diplostomid diversity in avian hosts throughout the New World. Herein, we provide descriptions of a novel genus of diplostomids with two new species. METHODS: Two species of diplostomids belonging to the new genus were collected from anhinga birds in Mississippi (USA) and Brazil. Partial nuclear 28S ribosomal and mitochondrial cox1 genes were sequenced. Ribosomal data were used for phylogenetic inference. RESULTS: Both species of Anhingatrema n. gen. were positioned in a 100% supported, monophyletic clade in the phylogenetic tree. The molecular phylogenetic position and a combination of morphological features (e.g., presence of pseudosuckers, testes shape and orientation) supported erection of the new genus. Anhingatrema overstreeti n. sp. and Anhingatrema cararai n. sp. are morphologically similar, but differ in size of and ratios associated with pseudosuckers. The two species differ by 2% of 28S sequences and 13.8% of cox1 sequences. Comparison of DNA sequences revealed that Diplostomidae gen. sp. in GenBank (MZ314151) is conspecific with An. overstreeti n. sp. CONCLUSION: Anhingatrema n. gen. is the sixth genus of diplostomids known from anhingas worldwide. Anhingatrema cararai n. sp. is the first diplostomid to be reported from anhingas in South America. Combined with previous studies, the molecular phylogenies revealed at least two host switches to anhingas from other birds during the evolutionary history of the Diplostomidae.


Assuntos
Trematódeos , Animais , Filogenia , Genes Mitocondriais , Aves , Brasil
7.
Proc Biol Sci ; 289(1987): 20221283, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36416043

RESUMO

Birds are highly visually oriented and use plumage coloration as an important signalling trait in social communication. Hence, males and females may have different patterns of plumage coloration, a phenomenon known as sexual dichromatism. Because males tend to have more complex plumages, sexual dichromatism is usually attributed to female choice. However, plumage coloration is partly condition-dependent; therefore, other selective pressures affecting individuals' success may also drive the evolution of this trait. Here, we used tanagers as model organisms to study the relationships between dichromatism and plumage coloration complexity in tanagers with parasitism by haemosporidians, investment in reproduction and life-history traits. We screened blood samples from 2849 individual birds belonging to 52 tanager species to detect haemosporidian parasites. We used publicly available data for plumage coloration, bird phylogeny and life-history traits to run phylogenetic generalized least-square models of plumage dichromatism and complexity in male and female tanagers. We found that plumage dichromatism was more pronounced in bird species with a higher prevalence of haemosporidian parasites. Lastly, high plumage coloration complexity in female tanagers was associated with a longer incubation period. Our results indicate an association between haemosporidian parasites and plumage coloration suggesting that parasites impact mechanisms of sexual selection, increasing differences between the sexes, and social (non-sexual) selection, driving females to develop more complex coloration.


Assuntos
Parasitos , Passeriformes , Humanos , Animais , Masculino , Feminino , Filogenia , Pigmentação , Caracteres Sexuais
8.
Parasitology ; : 1-10, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36226920

RESUMO

Vector-borne parasites are important ecological drivers influencing life-history evolution in birds by increasing host mortality or susceptibility to new diseases. Therefore, understanding why vulnerability to infection varies within a host clade is a crucial task for conservation biology and for understanding macroecological life-history patterns. Here, we studied the relationship of avian life-history traits and climate on the prevalence of Plasmodium and Parahaemoproteus parasites. We sampled 3569 individual birds belonging to 53 species of the family Thraupidae. Individuals were captured from 2007 to 2018 at 92 locations. We created 2 phylogenetic generalized least-squares models with Plasmodium and Parahaemoproteus prevalence as our response variables, and with the following predictor variables: climate PC1, climate PC2, body size, mixed-species flock participation, incubation period, migration, nest height, foraging height, forest cover, and diet. We found that Parahaemoproteus and Plasmodium prevalence was higher in species inhabiting open habitats. Tanager species with longer incubation periods had higher Parahaemoproteus prevalence as well, and we hypothesize that these longer incubation periods overlap with maximum vector abundances, resulting in a higher probability of infection among adult hosts during their incubation period and among chicks. Lastly, we found that Plasmodium prevalence was higher in species without migratory behaviour, with mixed-species flock participation, and with an omnivorous or animal-derived diet. We discuss the consequences of higher infection prevalence in relation to life-history traits in tanagers.

9.
Parasitology ; 149(13): 1760-1768, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36165282

RESUMO

Migratory birds are implicated in dispersing haemosporidian parasites over great geographic distances. However, their role in sharing these vector-transmitted blood parasites with resident avian host species along their migration flyway is not well understood. We studied avian haemosporidian parasites in 10 localities where Chilean Elaenia, a long-distance Neotropical austral migrant species, spends part of its annual cycle to determine local parasite transmission among resident sympatric host species in the elaenia's distributional range across South America. We sampled 371 Chilean Elaenias and 1,818 birds representing 243 additional sympatric species from Brazilian wintering grounds to Argentinian breeding grounds. The 23 haemosporidian lineages found in Chilean Elaenias exhibited considerable variation in distribution, specialization, and turnover across the 10 avian communities in South America. Parasite lineage dissimilarity increased with geographic distance, and infection probability by Parahaemoproteus decreased in localities harbouring a more diverse haemosporidian fauna. Furthermore, blood smears from migrating Chilean Elaenias and local resident avian host species did not contain infective stages of Leucocytozoon, suggesting that transmission did not take place in the Brazilian stopover site. Our analyses confirm that this Neotropical austral migrant connects avian host communities and transports haemosporidian parasites along its distributional range in South America. However, the lack of transmissive stages at stopover site and the infrequent parasite lineage sharing between migratory host populations and residents at breeding and wintering grounds suggest that Chilean Elaenias do not play a significant role in dispersing haemosporidian parasites, nor do they influence local transmission across South America.


Assuntos
Doenças das Aves , Haemosporida , Parasitos , Passeriformes , Plasmodium , Animais , Prevalência , Chile/epidemiologia , Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , Haemosporida/genética , Filogenia
10.
Parasitol Res ; 121(5): 1407-1417, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35106653

RESUMO

Avian haemosporidians from the genera Plasmodium and Haemoproteus are vector transmitted parasites. A growing body of evidence suggests that variation in their prevalence within avian communities is correlated with a variety of avian ecological traits. Here, we examine the relationship between infection probability and diversity of haemosporidian lineages and avian host ecological traits (average body mass, foraging stratum, migratory behavior, and nest type). We used molecular methods to detect haemosporidian parasites in blood samples from 642 individual birds of 149 species surveyed at four localities in the Brazilian Pantanal. Based on cytochrome b sequences, we recovered 28 lineages of Plasmodium and 17 of Haemoproteus from 31 infected avian species. Variation in lineage diversity among bird species was not explained by avian ecological traits. Prevalence was heterogenous across avian hosts. Bird species that forage near the ground were less likely to be infected by Haemoproteus, whereas birds that build open cup nests were more likely infected by Haemoproteus. Furthermore, birds foraging in multiple strata were more likely to be infected by Plasmodium. Two other ecological traits, often related to host resistance (body mass and migratory behavior), did not predict infection probability among birds sampled in the Pantanal. Our results suggest that avian host traits are less important determinants of haemosporidian diversity in Pantanal than in other regions, but reinforces that host attributes, related to vector exposure, are to some extent important in modulating infection probability within an avian host assemblage.


Assuntos
Doenças das Aves , Haemosporida , Parasitos , Plasmodium , Infecções Protozoárias em Animais , Animais , Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , Aves/parasitologia , Filogenia , Plasmodium/genética , Prevalência , Infecções Protozoárias em Animais/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA