Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 12: 630938, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33936043

RESUMO

In agreement with other fungal infections, immunoprotection in pulmonary paracoccidioidomycosis (PCM) is mediated by Th1/Th17 cells whereas disease progression by prevalent Th2/Th9 immunity. Treg cells play a dual role, suppressing immunity but also controlling excessive tissue inflammation. Our recent studies have demonstrated that the enzyme indoleamine 2,3 dioxygenase (IDO) and the transcription factor aryl hydrocarbon receptor (AhR) play an important role in the immunoregulation of PCM. To further evaluate the immunomodulatory activity of AhR in this fungal infection, Paracoccidioides brasiliensis infected mice were treated with two different AhR agonists, L-Kynurenin (L-Kyn) or 6-formylindole [3,2-b] carbazole (FICZ), and one AhR specific antagonist (CH223191). The disease severity and immune response of treated and untreated mice were assessed 96 hours and 2 weeks after infection. Some similar effects on host response were shared by FICZ and L-Kyn, such as the reduced fungal loads, decreased numbers of CD11c+ lung myeloid cells expressing activation markers (IA, CD40, CD80, CD86), and early increased expression of IDO and AhR. In contrast, the AhR antagonist CH223191 induced increased fungal loads, increased number of pulmonary CD11c+ leukocytes expressing activation markers, and a reduction in AhR and IDO production. While FICZ treatment promoted large increases in ILC3, L-Kyn and CH223191 significantly reduced this cell population. Each of these AhR ligands induced a characteristic adaptive immunity. The large expansion of FICZ-induced myeloid, lymphoid, and plasmacytoid dendritic cells (DCs) led to the increased expansion of all CD4+ T cell subpopulations (Th1, Th2, Th17, Th22, and Treg), but with a clear predominance of Th17 and Th22 subsets. On the other hand, L-Kyn, that preferentially activated plasmacytoid DCs, reduced Th1/Th22 development but caused a robust expansion of Treg cells. The AhR antagonist CH223191 induced a preferential expansion of myeloid DCs, reduced the number of Th1, Th22, and Treg cells, but increased Th17 differentiation. In conclusion, the present study showed that the pathogen loads and the immune response in pulmonary PCM can be modulated by AhR ligands. However, further studies are needed to define the possible use of these compounds as adjuvant therapy for this fungal infection.


Assuntos
Diferenciação Celular/imunologia , Ligantes , Linfócitos/fisiologia , Paracoccidioidomicose/imunologia , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/imunologia , Índice de Gravidade de Doença , Animais , Diferenciação Celular/genética , Imunidade Inata , Imunomodulação , Pulmão/imunologia , Pneumopatias Fúngicas/imunologia , Linfócitos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Th1/imunologia , Células Th17/imunologia
2.
Front Immunol ; 9: 464, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29616019

RESUMO

Plasmacytoid dendritic cells (pDCs), which have been extensively studied in the context of the immune response to viruses, have recently been implicated in host defense mechanisms against fungal infections. Nevertheless, the involvement of human pDCs during paracoccidioidomycosis (PCM), a fungal infection endemic to Latin America, has been scarcely studied. However, pDCs were found in the cutaneous lesions of PCM patients, and in pulmonary model of murine PCM these cells were shown to control disease severity. These findings led us to investigate the role of human pDCs in the innate phase of PCM. Moreover, considering our previous data on the engagement of diverse Toll-like receptors and C-type lectin receptors receptors in Paracoccidioides brasiliensis recognition, we decided to characterize the innate immune receptors involved in the interaction between human pDCs and yeast cells. Purified pDCs were obtained from peripheral blood mononuclear cells from healthy donors and they were stimulated with P. brasiliensis with or without blocking antibodies to innate immune receptors. Here we demonstrated that P. brasiliensis stimulation activates human pDCs that inhibit fungal growth and secrete pro-inflammatory cytokines and type I IFNs. Surprisingly, P. brasiliensis-stimulated pDCs produce mature IL-1ß and activate caspase 1, possibly via inflammasome activation, which is a phenomenon not yet described during pDC engagement by microorganisms. Importantly, we also demonstrate that dectin-2 and dectin-3 are expressed on pDCs and appear to be involved (via Syk signaling) in the pDC-P. brasiliensis interaction. Moreover, P. brasiliensis-stimulated pDCs exhibited an efficient antigen presentation and were able to effectively activate CD4+ and CD8+ T cells. In conclusion, our study demonstrated for the first time that human pDCs are involved in P. brasiliensis recognition and may play an important role in the innate and adaptive immunity against this fungal pathogen.


Assuntos
Células Dendríticas/imunologia , Lectinas Tipo C/imunologia , Paracoccidioides/imunologia , Paracoccidioidomicose/imunologia , Plasmócitos/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Caspase 1/imunologia , Células Dendríticas/patologia , Feminino , Humanos , Interferon gama/imunologia , Interleucina-1beta/imunologia , Ativação Linfocitária , Masculino , Paracoccidioidomicose/patologia , Plasmócitos/patologia
3.
Front Immunol ; 8: 1522, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29181001

RESUMO

Resistance to primary fungal pathogens is usually attributed to the proinflammatory mechanisms of immunity conferred by interferon-γ activation of phagocytes that control microbial growth, whereas susceptibility is attributed to anti-inflammatory responses that deactivate immunity. This study challenges this paradigm by demonstrating that resistance to a primary fungal pathogen such as Paracoccidiodes brasiliensis can be mediated by disease tolerance, a mechanism that preserves host fitness instead of pathogen clearance. Among the mechanisms of disease tolerance described, a crucial role has been ascribed to the enzyme indoleamine-2,3 dioxygenase (IDO) that concomitantly controls pathogen growth by limiting tryptophan availability and reduces tissue damage by decreasing the inflammatory process. Here, we demonstrated in a pulmonary model of paracoccidioidomycosis that IDO exerts a dual function depending on the resistant pattern of hosts. IDO activity is predominantly enzymatic and induced by IFN-γ signaling in the pulmonary dendritic cells (DCs) from infected susceptible (B10.A) mice, whereas phosphorylated IDO (pIDO) triggered by TGF-ß activation of DCs functions as a signaling molecule in resistant mice. IFN-γ signaling activates the canonical pathway of NF-κB that promotes a proinflammatory phenotype in B10.A DCs that control fungal growth but ultimately suppress T cell responses. In contrast, in A/J DCs IDO promotes a tolerogenic phenotype that conditions a sustained synthesis of TGF-ß and expansion of regulatory T cells that avoid excessive inflammation and tissue damage contributing to host fitness. Therefore, susceptibility is unexpectedly mediated by mechanisms of proinflammatory immunity that are usually associated with resistance, whereas genetic resistance is based on mechanisms of disease tolerance mediated by pIDO, a phenomenon never described in the protective immunity against primary fungal pathogens.

4.
J Infect Dis ; 216(12): 1623-1634, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29029192

RESUMO

Background: Mutations in genes affecting interferon-γ (IFN-γ) immunity have contributed to understand the role of IFN-γ in protection against intracellular pathogens. However, inborn errors in STAT4, which controls interleukin-12 (IL-12) responses, have not yet been reported. Our objective was to determine the genetic defect in a family with a history of paracoccidioidomycosis. Methods: Genetic analysis was performed by whole-exome sequencing and Sanger sequencing. STAT4 phosphorylation (pSTAT4) and translocation to the nucleus, IFN-γ release by patient lymphocytes, and microbicidal activity of patient monocytes/macrophages were assessed. The effect on STAT4 function was evaluated by site-directed mutagenesis using a lymphoblastoid B cell line (B-LCL) and U3A cells. Results: A heterozygous missense mutation, c.1952 A>T (p.E651V) in STAT4 was identified in the index patient and her father. Patient's and father's lymphocytes showed reduced pSTAT4, nuclear translocation, and impaired IFN-γ production. Mutant B-LCL and U3A cells also displayed reduced pSTAT4. Patient's and father's peripheral blood mononuclear cells and macrophages demonstrated impaired fungicidal activity compared with those from healthy controls that improved in the presence of recombinant human IFN-γ, but not rhIL-12. Conclusion: Our data suggest autosomal dominant STAT4 deficiency as a novel inborn error of IL-12-dependent IFN-γ immunity associated with susceptibility to paracoccidioidomycosis.


Assuntos
Predisposição Genética para Doença , Interferon gama/deficiência , Subunidade p35 da Interleucina-12/metabolismo , Mutação de Sentido Incorreto , Paracoccidioidomicose/genética , Fator de Transcrição STAT4/genética , Adulto , Idoso , Linhagem Celular , Saúde da Família , Feminino , Genótipo , Heterozigoto , Humanos , Linfócitos/imunologia , Macrófagos/imunologia , Masculino , Análise de Sequência de DNA
5.
Front Immunol ; 8: 880, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28791025

RESUMO

In infectious diseases, the enzyme indoleamine 2,3 dioxygenase-1 (IDO1) that catalyzes the tryptophan (Trp) degradation along the kynurenines (Kyn) pathway has two main functions, the control of pathogen growth by reducing available Trp and immune regulation mediated by the Kyn-mediated expansion of regulatory T (Treg) cells via aryl hydrocarbon receptor (AhR). In pulmonary paracoccidioidomycosis (PCM) caused by the dimorphic fungus Paracoccidioides brasiliensis, IDO1 was shown to control the disease severity of both resistant and susceptible mice to the infection; however, only in resistant mice, IDO1 is induced by TGF-ß signaling that confers a stable tolerogenic phenotype to dendritic cells (DCs). In addition, in pulmonary PCM, the tolerogenic function of plasmacytoid dendritic cells was linked to the IDO1 activity. To further evaluate the function of IDO1 in pulmonary PCM, IDO1-deficient (IDO1-/-) C57BL/6 mice were intratracheally infected with P. brasiliensis yeasts and the infection analyzed at three postinfection periods regarding several parameters of disease severity and immune response. The fungal loads and tissue pathology of IDO1-/- mice were higher than their wild-type controls resulting in increased mortality rates. The evaluation of innate lymphoid cells showed an upregulated differentiation of the innate lymphoid cell 3 phenotype accompanied by a decreased expansion of ILC1 and NK cells in the lungs of infected IDO1-/- mice. DCs from these mice expressed elevated levels of costimulatory molecules and cytokine IL-6 associated with reduced production of IL-12, TNF-α, IL-1ß, TGF-ß, and IL-10. This response was concomitant with a marked reduction in AhR production. The absence of IDO1 expression caused an increased influx of activated Th17 cells to the lungs with a simultaneous reduction in Th1 and Treg cells. Accordingly, the suppressive cytokines IL-10, TGF-ß, IL-27, and IL-35 appeared in reduced levels in the lungs of IDO1-/- mice. In conclusion, the immunological balance mediated by the axis IDO/AhR is fundamental to determine the balance between Th17/Treg cells and control the severity of pulmonary PCM.

6.
Front Immunol ; 8: 786, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28740491

RESUMO

The NOD-like receptor P3 (NLRP3) inflammasome is an intracellular multimeric complex that triggers the activation of inflammatory caspases and the maturation of IL-1ß and IL-18, important cytokines for the innate immune response against pathogens. The functional NLRP3 inflammasome complex consists of NLRP3, the adaptor protein apoptosis-associated speck-like protein, and caspase-1. Various molecular mechanisms were associated with NLRP3 activation including the presence of extracellular ATP, recognized by the cell surface P2X7 receptor (P2X7R). Several pattern recognition receptors on innate immune cells recognize Paracoccidioides brasiliensis components resulting in diverse responses that influence adaptive immunity and disease outcome. However, the role of NLRP3 inflammasome was scantily investigated in pulmonary paracoccidioidomycosis (PCM), leading us to use an intratracheal (i.t.) model of infection to study the influence of this receptor in anti-fungal immunity and severity of infection. For in vivo studies, C57BL/6 mice deficient for several NLRP3 inflammasome components (Nlrp3-/-, Casp1/11-/-, Asc-/-) as well as deficient for ATP receptor (P2x7r-/-) were infected via i.t. with P. brasiliensis and several parameters of immunity and disease severity analyzed at the acute and chronic periods of infection. Pulmonary PCM was more severe in Nlrp3-/-, Casp1/11-/-, Asc-/-, and P2x7r-/- mice as demonstrated by the increased fungal burdens, mortality rates and tissue pathology developed. The more severe disease developed by NLRP3, ASC, and Caspase-1/11 deficient mice was associated with decreased production of IL-1ß and IL-18 and reduced inflammatory reactions mediated by PMN leukocytes and activated CD4+ and CD8+ T cells. The decreased T cell immunity was concomitant with increased expansion of CD4+CD25+Foxp3 regulatory T (Treg) cells. Characterization of intracellular cytokines showed a persistent reduction of CD4+ and CD8+ T cells expressing IFN-γ and IL-17 whereas those producing IL-4 and TGF-ß appeared in increased frequencies. Histopathological studies showed that all deficient mouse strains developed more severe lesions containing elevated numbers of budding yeast cells resulting in increased mortality rates. Altogether, these findings led us to conclude that the activation of the NLRP3 inflammasome has a crucial role in the immunoprotection against pulmonary PCM by promoting the expansion of Th1/Th17 immunity and reducing the suppressive control mediated by Treg cells.

7.
Mediators Inflamm ; 2015: 852574, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26635449

RESUMO

Cysteinyl leukotrienes (CysLTs) and lipoxins (LXs) are lipid mediators that control inflammation, with the former inducing and the latter inhibiting this process. Because the role played by these mediators in paracoccidioidomycosis was not investigated, we aimed to characterize the role of CysLT in the pulmonary infection developed by resistant (A/J) and susceptible (B10.A) mice. 48 h after infection, elevated levels of pulmonary LTC4 and LXA4 were produced by both mouse strains, but higher levels were found in the lungs of susceptible mice. Blocking the CysLTs receptor by MTL reduced fungal loads in B10.A, but not in A/J mice. In susceptible mice, MLT treatment led to reduced influx of PMN leukocytes, increased recruitment of monocytes, predominant synthesis of anti-inflammatory cytokines, and augmented expression of 5- and 15-lipoxygenase mRNA, suggesting a prevalent LXA4 activity. In agreement, MTL-treated macrophages showed reduced fungal burdens associated with decreased ingestion of fungal cells. Furthermore, the addition of exogenous LX reduced, and the specific blockade of the LX receptor increased the fungal loads of B10.A macrophages. This study showed for the first time that inhibition of CysLTs signaling results in less severe pulmonary paracoccidioidomycosis that occurs in parallel with elevated LX activity and reduced infection of macrophages.


Assuntos
Lipoxinas/metabolismo , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/microbiologia , Paracoccidioides/patogenicidade , Paracoccidioidomicose/etiologia , Acetatos/farmacologia , Animais , Araquidonato 5-Lipoxigenase/deficiência , Araquidonato 5-Lipoxigenase/genética , Ciclopropanos , Dinoprostona/biossíntese , Mediadores da Inflamação/metabolismo , Antagonistas de Leucotrienos/farmacologia , Leucotrieno C4/biossíntese , Lipoxinas/biossíntese , Lipoxinas/imunologia , Macrófagos Alveolares/efeitos dos fármacos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos A , Camundongos Knockout , Paracoccidioidomicose/tratamento farmacológico , Paracoccidioidomicose/imunologia , Quinolinas/farmacologia , Receptores de Leucotrienos/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Sulfetos
8.
PLoS Negl Trop Dis ; 9(10): e0004189, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26512987

RESUMO

Paracoccidioidomycosis (PCM), is a pulmonary fungal disease whose severity depends on the adequate development of T cell immunity. Although regulatory T (Treg) cells were shown to control immunity against PCM, deleterious or protective effects were described in different experimental settings. To clarify the function of Treg cells in pulmonary PCM, loss-and gain-of-function approaches were performed with Foxp3GFP knock-in mice and immunodeficient Rag1-/- mice, respectively, which were intratracheally infected with 106 yeast cells. The activity of Foxp3-expressing Treg cells in pulmonary PCM was determined in Foxp3GFP transgenic mice. First, it was verified that natural Treg cells migrate to the lungs of infected mice, where they become activated. Depletion of Treg cells led to reduced fungal load, diminished pathogen dissemination and increased Th1/Th2/Th17 immunity. Further, adoptive transfer of diverse T cell subsets to Rag1-/- mice subsequently infected by the pulmonary route demonstrated that isolated CD4+Foxp3+ Treg cells were able to confer some degree of immunoprotection and that CD4+Foxp3- T cells alone reduced fungal growth and enhanced T cell immunity, but induced vigorous inflammatory reactions in the lungs. Nevertheless, transfer of Treg cells combined with CD4+Foxp3- T cells generated more efficient and balanced immune Th1/Th2/Th17 responses able to limit pathogen growth and excessive tissue inflammation, leading to regressive disease and increased survival rates. Altogether, these loss- and gain-of-function approaches allow us to clearly demonstrate the dual role of Treg cells in pulmonary PCM, their deleterious effects by impairing T cell immunity and pathogen eradication, and their protective role by suppressing exacerbated tissue inflammation.


Assuntos
Pneumopatias Fúngicas/imunologia , Paracoccidioidomicose/imunologia , Linfócitos T Reguladores/imunologia , Animais , Fusão Gênica Artificial , Movimento Celular , Fatores de Transcrição Forkhead/genética , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Pulmão/imunologia , Pulmão/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Coloração e Rotulagem/métodos , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/química
9.
Front Microbiol ; 6: 913, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26388856

RESUMO

Dectin-1 is a pattern recognition receptor (PRR) that recognizes ß-glucans and plays a major role in the immunity against fungal pathogens. Paracoccidioides brasiliensis, the causative agent of paracoccidioidomycosis, has a sugar-rich cell wall mainly composed of mannans and glucans. To investigate the role of dectin-1 in the innate immunity of resistant (A/J) and susceptible (B10.A) mice to P. brasiliensis infection, we evaluated the role of curdlan (a dectin-1 agonist) and laminarin (a dectin-1 antagonist) in the activation of macrophages from both mouse strains. We verified that curdlan has a negligible role in the activation of B10.A macrophages but enhances the phagocytic and fungicidal abilities of A/J macrophages. Curdlan up-regulated the expression of costimulatory molecules and PRRs in A/J macrophages that express elevated levels of dectin-1, but not in B10.A cells. In addition, curdlan treatment inhibited arginase-1 and enhanced NO-synthase mRNA expression in infected A/J macrophages but had not effect in B10.A cells. In contrast, laminarin reinforced the respective M2/M1 profiles of infected A/J and B10.A macrophages. Following curdlan treatment, A/J macrophages showed significantly higher Syk kinase phosphorylation and expression of intracellular pro-IL-1ß than B10.A cells. These findings led us to investigate if the NRLP3 inflammasome was differently activated in A/J and B10.A cells. Indeed, compared with B10.A cells A/J macrophages showed an increased expression of NALP3, ASC, and IL-1ß mRNA. They also showed elevated caspase-1 activity and secreted high levels of mature IL-ß and IL-18 after curdlan treatment and P. brasiliensis infection. Our data demonstrate that soluble and particulate ß-glucans exert opposed modulatory activities on macrophages of diverse genetic patterns. Moreover, the synergistic action of dectin-1 and NALP3 inflammasome were for the first time associated with the innate response of resistant hosts to P. brasiliensis infection.

10.
Front Microbiol ; 6: 261, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25873917

RESUMO

The concomitant use of diverse pattern recognition receptors (PRRs) by innate immune cells can result in synergistic or inhibitory activities that profoundly influence anti-microbial immunity. Dectin-1 and the mannose receptor (MR) are C-type lectin receptors (CLRs) previously reported to cooperate with toll-like receptors (TLRs) signaling in the initial inflammatory response and in the induction of adaptive Th17 and Tc17 immunity mediated by CD4(+) and CD8(+) T cells, respectively. The protective immunity against paracoccidioidomycosis, the most prevalent fungal infection of Latin America, was previously shown to be influenced by these T cell subsets motivating us to study the contribution of TLRs, Dectin-1, and MR to the development of Th17/Tc17 immunity. First, curdlan a specific Dectin-1 agonist was used to characterize the influence of this receptor in the proliferative response and Th17/Tc17 differentiation of naïve lymphocytes induced by Paracoccidioides brasiliensis activated dendritic cells (DCs) from C57BL/6 mice. Then, wild type (WT), Dectin-1(-/-), TLR-2(-/-), and TLR-4(-/-) DCs treated or untreated with anti-Dectin-1 and anti-MR antibodies were used to investigate the contribution of these receptors in lymphocyte activation and differentiation. We verified that curdlan induces an enhanced lymphocyte proliferation and development of IL-17 producing CD4(+) and CD8(+) T cells. In addition, treatment of WT, TLR-2(-/-), and TLR-4(-/-) DCs by anti-Dectin-1 antibodies or antigen presentation by Dectin-1(-/-) DCs led to decreased lymphoproliferation and impaired Th17 and Tc17 expansion. These responses were also inhibited by anti-MR treatment of DCs, but a synergistic action on Th17/Tc17 differentiation was mediated by TLR-4 and MR. Taken together, our results indicate that diverse TLRs and CLRs are involved in the induction of lymphocyte proliferation and Th17/Tc17 differentiation mediated by P. brasiliensis activated DCs, but a synergist action was restricted to Dectin-1, TLR-4, and MR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA