Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 7(1): 9305, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28839159

RESUMO

Solid-state nuclear magnetic resonance (ssNMR) experimental 27Al metallic shifts reported in the literature for bulk metallic glasses (BMGs) were revisited in the light of state-of-the-art atomistic simulations. In a consistent way, the Gauge-Including Projector Augmented-Wave (GIPAW) method was applied in conjunction with classical molecular dynamics (CMD). A series of Zr-Cu-Al alloys with low Al concentrations were selected as case study systems, for which realistic CMD derived structural models were used for a short- and medium-range order mining. That initial procedure allowed the detection of trends describing changes on the microstructure of the material upon Al alloying, which in turn were used to guide GIPAW calculations with a set of abstract systems in the context of ssNMR. With essential precision and accuracy, the ab initio simulations also yielded valuable trends from the electronic structure point of view, which enabled an overview of the bonding nature of Al-centered clusters as well as its influence on the experimental ssNMR outcomes. The approach described in this work might promote the use of ssNMR spectroscopy in research on glassy metals. Moreover, the results presented demonstrate the possibility to expand the applications of this technique, with deeper insight into nuclear interactions and less speculative assignments.

2.
J Phys Chem A ; 113(23): 6494-9, 2009 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-19445473

RESUMO

The reaction of HF molecules with brucite, Mg(OH)(2), leading to the formation of Mg(OH)(2-x)F(x), was theoretically studied by ab initio density functional theory (DFT) with periodic boundary conditions. We proposed as mechanism for this reaction four elementary steps: adsorption of the HF molecule, OH(-) liberation from brucite as a water molecule, desorption of the newly formed H(2)O, and rearrangement of the F(-) anion into a hydroxyl position. For the Mg(OH)(2-x)F(x) formation, with x = 1/9, the final product, outcome from an initially adsorbed HF molecule, we computed the Helmholtz free energy variation DeltaF = -23 kcal/mol. The calculated frequency for the most intense infrared band, a Mg-F stretching mode, was 342 cm(-1). Two transition states, corresponding to the hydroxyl reacting with a proton forming a water molecule and migration of a fluoride anion into a hydroxyl vacancy, were computed. The calculated reaction barriers indicate that the reaction between Mg(OH)(2) layers and HF molecules is slow and irreversible.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA