Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Pharm ; 13(8): 2844-54, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27283751

RESUMO

Proteins often possess highly specific biological activities that make them potential therapeutics, but their physical and chemical instabilities during formulation, storage, and delivery have limited their medical use. Therefore, engineering of nanosized vehicles to stabilize protein therapeutics and to allow for targeted treatment of complex diseases, such as cancer, is of considerable interest. A micelle-like nanoparticle (NP) was designed for both, tumor targeting and stimulus-triggered release of the apoptotic protein cytochrome c (Cyt c). This system is composed of a Cyt c NP stabilized by a folate-receptor targeting amphiphilic copolymer (FA-PEG-PLGA) attached to Cyt c through a redox-sensitive bond. FA-PEG-PLGA-S-S-Cyt c NPs exhibited excellent stability under extracellular physiological conditions, whereas once in the intracellular reducing environment, Cyt c was released from the conjugate. Under the same conditions, the folate-decorated NP reduced folate receptor positive HeLa cell viability to 20%, while the same complex without FA only reduced it to 80%. Confocal microscopy showed that the FA-PEG-PLGA-S-S-Cyt c NPs were internalized by HeLa cells and were capable of endosomal escape. The specificity of the folate receptor-mediated internalization was confirmed by the lack of uptake by two folate receptor deficient cell lines: A549 and NIH-3T3. Finally, the potential as antitumor therapy of our folate-decorated Cyt c-based NPs was confirmed with an in vivo brain tumor model. In conclusion, we were able to create a stable, selective, and smart nanosized Cyt c delivery system.


Assuntos
Citocromos c/metabolismo , Nanopartículas/química , Nanopartículas/metabolismo , Células A549 , Animais , Apoptose , Citocromos c/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Glioma/metabolismo , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Micelas , Células NIH 3T3 , Polímeros/química
2.
FEBS Open Bio ; 5: 397-404, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26101738

RESUMO

Lipid-protein complexes comprised of oleic acid (OA) non-covalently coupled to human/bovine α-lactalbumin, named HAMLET/BAMLET, display cytotoxic properties against cancer cells. However, there is still a substantial debate about the role of the protein in these complexes. To shed light into this, we obtained three different BAMLET complexes using varying synthesis conditions. Our data suggest that to form active BAMLET particles, OA has to reach critical micelle concentration with an approximate diameter of 250 nm. Proteolysis experiments on BAMLET show that OA protects the protein and is probably located on the surface, consistent with a micelle-like structure. Native or unfolded α-lactalbumin without OA lacked any tumoricidal activity. In contrast, OA alone killed cancer cells with the same efficiency at equimolar concentrations as its formulation as BAMLET. Our data show unequivocally that the cytotoxicity of the BAMLET complex is exclusively due to OA and that OA alone, when formulated as a micelle, is as toxic as the BAMLET complex. The contradictory literature results on the cytotoxicity of BAMLET might be explained by our finding that it was imperative to sonicate the samples to obtain toxic OA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA