Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Biol Macromol ; 267(Pt 2): 131666, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636755

RESUMO

Natural Rubber Latex (NRL) has shown to be a promising biomaterial for use as a drug delivery system to release various bioactive compounds. It is cost-effective, easy to handle, biocompatible, and exhibits pro-angiogenic and pro-healing properties for both soft and hard tissues. NRL releases compounds following burst and sustained release kinetics, exhibiting first-order release kinetics. Moreover, its pore density can be adjusted for tailored kinetics profiles. In addition, biotechnological applications of NRL in amblyopia, smart mattresses, and neovaginoplasty have demonstrated success. This comprehensive review explores NRL's diverse applications in biotechnology and biomedicine, addressing challenges in translating research into clinical practice. Organized into eight sections, the review emphasizes NRL's potential in wound healing, drug delivery, and metallic nanoparticle synthesis. It also addresses the challenges in enhancing NRL's physical properties and discusses its interactions with the human immune system. Furthermore, examines NRL's potential in creating wearable medical devices and biosensors for neurological disorders. To fully explore NRL's potential in addressing important medical conditions, we emphasize throughout this review the importance of interdisciplinary research and collaboration. In conclusion, this review advances our understanding of NRL's role in biomedical and biotechnological applications, offering insights into its diverse applications and promising opportunities for future development.


Assuntos
Materiais Biocompatíveis , Sistemas de Liberação de Medicamentos , Látex , Medicina Regenerativa , Borracha , Humanos , Materiais Biocompatíveis/química , Látex/química , Medicina Regenerativa/métodos , Borracha/química , Cicatrização/efeitos dos fármacos
2.
Biomater Adv ; 157: 213754, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211507

RESUMO

Chronic wounds pose significant health concerns. Current treatment options include natural compounds like natural rubber latex (NRL) from Hevea brasiliensis. NRL, particularly the F1 protein fraction, has demonstrated bioactivity, biocompatibility, and angiogenic effects. So far, there is no study comparing F1 protein with total NRL serum, and the necessity of downstream processing remains unknown. Here, we evaluated the angiogenic potential of F1 protein compared to total NRL serum and the need for downstream processing. For that, ion exchange chromatography (DEAE-Sepharose), antioxidant activity, physicochemical characterization, cell culture in McCoy fibroblasts, and wound healing in Balb-C mice were performed. Also, the evaluation of histology and collagen content and the levels of inflammatory mediators were quantified. McCoy fibroblast cell assay showed that F1 protein (0.01 %) and total NRL serum (0.01 %) significantly increased cell proliferation by 47.1 ± 11.3 % and 25.5 ± 2.5 %, respectively. However, the AA of F1 protein (78.9 ± 0.8 %) did not show a significant difference compared to NRL serum (77.0 ± 1.1 %). F1 protein and NRL serum were more effective in wound management in rodents. Histopathological analysis confirmed accelerated healing and advanced tissue repair. Similarly, the F1 protein (0.01 %) increased collagen, showing that this fraction can stimulate the synthesis of collagen by fibroblastic cells. Regarding cytokines production (IL-10, TNF-α, IFN-γ), F1 protein and NRL serum did not exert an impact on the synthesis of these cytokines. Furthermore, we did not observe statistically significant changes in dosages of enzymes (MPO and EPO) among the groups. Nevertheless, Nitric Oxide dosage was reduced drastically when the F1 protein (0.01 %) protein was applied topically. These findings contribute to the understanding of F1 protein and NRL serum properties and provide insights into cost-effectiveness and practical applications in medicine and biotechnology. Therefore, further research is needed to assess the economic feasibility of downstream processing for NRL-based herbal medicine derived from Hevea brasiliensis.


Assuntos
Hevea , Borracha , Animais , Camundongos , Látex , Hevea/química , Cicatrização , Colágeno , Citocinas
3.
Nutrition ; 117: 112228, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37948994

RESUMO

OBJECTIVES: The aim of this study was to assess maternal dietary food intake patterns, anthropometric measures, and multiple biochemical markers in women with gestational diabetes mellitus and pregnancy-specific urinary incontinence and to explore whether antedating gestational diabetes mellitus environment affects the pregnancy-specific urinary incontinence development in a cohort of pregnant women with gestational diabetes mellitus and pregnancy-specific urinary incontinence. METHODS: Maternal dietary information and anthropometric measurements were collected. At 24 wk of gestation, with a fasting venipuncture sample, current blood samples for biochemical markers of hormones, vitamins, and minerals were analyzed. The groups were compared in terms of numerical variables using analysis of variance for independent samples followed by multiple comparisons. RESULTS: Of the 900 pregnant women with complete data, pregnant women in the gestational diabetes mellitus pregnancy-specific urinary incontinence group had higher body mass index during pregnancy, arm circumference, and triceps skinfold than the non-gestational diabetes mellitus continent and non-gestational diabetes mellitus pregnancy-specific urinary incontinence groups, characterizing an obesogenic maternal environment. Regarding dietary food intake, significant increases in aromatic amino acids, branched-chain amino acids, dietary fiber, magnesium, zinc, and water were observed in pregnancy-specific urinary incontinence group compared with the non-gestational diabetes mellitus continent group. Serum vitamin C was reduced in the gestational diabetes mellitus pregnancy-specific urinary incontinence group compared with the non-gestational diabetes mellitus pregnancy-specific urinary incontinence group. CONCLUSIONS: This study emphasizes the necessity for a comprehensive strategy for gestational diabetes mellitus women with pregnancy-specific urinary incontinence in terms of deviation in maternal adaptation trending toward obesity and maternal micronutrients deficiencies.


Assuntos
Diabetes Gestacional , Incontinência Urinária , Gravidez , Feminino , Humanos , Dieta/efeitos adversos , Biomarcadores , Ingestão de Alimentos
4.
Int J Mol Sci ; 23(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36361671

RESUMO

Gestational diabetes mellitus (GDM) is recognized as a "window of opportunity" for the future prediction of such complications as type 2 diabetes mellitus and pelvic floor muscle disorders, including urinary incontinence and genitourinary dysfunction. Translational studies have reported that pelvic floor muscle disorders are due to a GDM-induced-myopathy (GDiM) of the pelvic floor muscle and rectus abdominis muscle (RAM). We now describe the transcriptome profiling of the RAM obtained by Cesarean section from GDM and non-GDM women with and without pregnancy-specific urinary incontinence (PSUI). We identified 650 genes in total, and the differentially expressed genes were defined by comparing three control groups to the GDM with PSUI group (GDiM). Enrichment analysis showed that GDM with PSUI was associated with decreased gene expression related to muscle structure and muscle protein synthesis, the reduced ability of muscle fibers to ameliorate muscle damage, and the altered the maintenance and generation of energy through glycogenesis. Potential genetic muscle biomarkers were validated by RT-PCR, and their relationship to the pathophysiology of the disease was verified. These findings help elucidate the molecular mechanisms of GDiM and will promote the development of innovative interventions to prevent and treat complications such as post-GDM urinary incontinence.


Assuntos
Diabetes Mellitus Tipo 2 , Diabetes Gestacional , Doenças Musculares , Incontinência Urinária , Gravidez , Humanos , Feminino , Diabetes Gestacional/metabolismo , Reto do Abdome/metabolismo , Cesárea/efeitos adversos , Diabetes Mellitus Tipo 2/complicações , Transcriptoma , Incontinência Urinária/genética , Biomarcadores , Perfilação da Expressão Gênica
5.
Sci Rep ; 12(1): 7375, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35513450

RESUMO

Gestational diabetes mellitus (GDM) plus rectus abdominis muscle (RAM) myopathy predicts long-term urinary incontinence (UI). Atrophic and stiff RAM are characteristics of diabetes-induced myopathy (DiM) in pregnant rats. This study aimed to determine whether swimming exercise (SE) has a therapeutic effect in mild hyperglycemic pregnant rats model. We hypothesized that SE training might help to reverse RAM DiM. Mild hyperglycemic pregnant rats model was obtained by a unique subcutaneous injection of 100 mg/kg streptozotocin (diabetic group) or citrate buffer (non-diabetic group) on the first day of life in Wistar female newborns. At 90 days of life, the rats are mated and randomly allocated to remain sedentary or subjected to a SE protocol. The SE protocol started at gestational day 0 and consisted of 60 min/day for 6 days/week in a period of 20 days in a swim tunnel. On day 21, rats were sacrificed, and RAM was collected and studied by picrosirius red, immunohistochemistry, and transmission electron microscopy. The SE protocol increased the fiber area and diameter, and the slow-twitch and fast-twitch fiber area and diameter in the diabetic exercised group, a finding was also seen in control sedentary animals. There was a decreased type I collagen but not type III collagen area and showed a similar type I/type III ratio compared with the control sedentary group. In conclusion, SE during pregnancy reversed the RAM DiM in pregnant rats. These findings may be a potential protocol to consider in patients with RAM damage caused by GDM.


Assuntos
Diabetes Mellitus Experimental , Diabetes Gestacional , Doenças Musculares , Condicionamento Físico Animal , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/terapia , Feminino , Doenças Musculares/etiologia , Doenças Musculares/terapia , Gravidez , Ratos , Ratos Wistar , Estreptozocina/efeitos adversos , Natação/fisiologia
6.
Calcif Tissue Int ; 108(5): 667-679, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33420810

RESUMO

Discarded tissues, like human amniotic membranes and adipose tissue, were investigated for the application of Decellularized Human Amniotic Membrane (DAM) as a viable scaffold for transplantation of Adipose-derived stromal cells (ASCs) in bone regeneration of non-healing calvarial defects in rats. Amniotic membrane was decellularized to provide a scaffold for male Wistar rats ASCs expansion and transplantation. ASCs osteoinduction in vitro promoted the deposition of a mineralized bone-like matrix by ASCs, as calcified globular accretions associated with the cells on the DAM surface and inside the collagenous matrix. Non-healing calvarial defects on male Wistar rats were randomly divided in control without treatment, treatment with four layers of DAM, or four layers of DAM associated with ASCs. After 12 weeks, tissue blocks were examined by micro-computed tomography and histology. DAM promoted osteoconduction by increasing the collagenous matrix on both DAM treatments. DAM with ASCs stimulated bone deposition, demonstrated by a higher percentage of bone volume and trabecular bone number, compared to control. Besides the osteogenic capacity in vitro, ASCs stimulated the healing of calvarial defects with significant DAM graft incorporation concomitant with higher host bone deposition. The enhanced in vivo bone regeneration by undifferentiated ASCs loaded onto DAM confirmed the potential of an easily collected autologous cell source associated with a broadly available collagenous matrix in tissue engineering.


Assuntos
Âmnio , Regeneração Óssea , Tecido Adiposo , Animais , Diferenciação Celular , Células Cultivadas , Masculino , Osteogênese , Ratos , Ratos Wistar , Alicerces Teciduais , Microtomografia por Raio-X
7.
Diabetes Res Clin Pract ; 166: 108315, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32679058

RESUMO

AIMS: To evaluate the effects of gestational diabetes mellitus (GDM) on the structural characteristics of the rectus abdominis muscle (RAM) and its indirect effects on pregnancy-specific urinary incontinence (PSUI). METHODS: A total of 92 pregnant women were divided into four groups, according to their clinical conditions: non-GDM continent, non-GDM associated PSUI, GDM continent and GDM associated PSUI. The muscle morphometry (histochemistry and immunohistochemistry) for the fiber types and collagen fiber distribution, the ultrastructural analysis (transmission electron microscopy), the protein expression of fiber types and calcium signaling (Western blotting), and the content of types I and III collagen fiber (ELISA) in RAM collected at delivery were assessed. RESULTS: The GDM groups presented a significantly increased number of slow fibers and slow-twitch oxidative fiber expression; decreased fiber area, number of fast fibers, and area of collagen; an increase in central nuclei; ultrastructural alterations with focal lesion areas such as myeloid structures, sarcomere disorganization, and mitochondrial alteration. The PSUI groups presented a considerable decrease in types I and III collagen contents and the localization of collagen fiber. CONCLUSIONS: Our data reveal that GDM causes morphological, biochemical and physiological changes in the RAM, and this might predispose women to PSUI.


Assuntos
Complicações do Diabetes/complicações , Diabetes Gestacional/fisiopatologia , Reto do Abdome/anormalidades , Incontinência Urinária/etiologia , Adulto , Estudos Transversais , Feminino , Humanos , Gravidez
8.
Cells ; 9(3)2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32164322

RESUMO

Gestational diabetes Mellitus (GDM) is a complex clinical condition that promotes pelvic floor myopathy, thus predisposing sufferers to urinary incontinence (UI). GDM usually regresses after birth. Nonetheless, a GDM history is associated with higher risk of subsequently developing type 2 diabetes, cardiovascular diseases (CVD) and UI. Some aspects of the pathophysiology of GDM remain unclear and the associated pathologies (outcomes) are poorly addressed, simultaneously raising public health costs and diminishing women's quality of life. Exosomes are small extracellular vesicles produced and actively secreted by cells as part of their intercellular communication system. Exosomes are heterogenous in their cargo and depending on the cell sources and environment, they can mediate both pathogenetic and therapeutic functions. With the advancement in knowledge of exosomes, new perspectives have emerged to support the mechanistic understanding, prediction/diagnosis and ultimately, treatment of the post-GMD outcomes. Here, we will review recent advances in knowledge of the role of exosomes in GDM and related areas and discuss the possibilities for translating exosomes as therapeutic agents in the GDM clinical setting.


Assuntos
Complicações do Diabetes/genética , Diabetes Gestacional/genética , Exossomos/metabolismo , Feminino , Humanos , Gravidez
9.
J Mater Sci Mater Med ; 25(2): 461-70, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24202915

RESUMO

Natural rubber latex (NRL) has several features that make it an excellent biomaterial to promote the growth and repair of tissues, skin and bones. Most of the research with NRL membranes uses a mixture of different clones and chemical preservatives in the collection process. In this study, we compared five clones that produce NRL, seeking to identify their differences in biocompatibility. The clones studied were RRIM 600, PB 235, GT1, PR 255 and IAN 873 commonly found in plantations in Brazil. We did also study the effect of ammonia used during latex collection. NRL membranes were prepared aseptically and sterilized. In the in vitro tests, the membranes remained in direct contact with mouse fibroblasts cells for three periods, 24, 48 and 72 h. In the in vivo tests, the membranes were implanted subcutaneously in rabbits. The results indicated the biocompatibility of the membranes obtained from all clones. Membranes from the clones RRIM 600 and IAN 873 induced greater cell proliferation, suggesting greater bioactivity. It was found that the membranes made from latex that was in contact with ammonia during collection, showed cytotoxic and genotoxic effects in cultures, as well as necrosis, and increased inflammatory cells in the rabbit's tissues close to the implant.


Assuntos
Materiais Biocompatíveis , Clonagem de Organismos , Látex , Árvores/classificação , Animais , Brasil , Células Cultivadas , Ensaio Cometa , Masculino , Camundongos , Microscopia Eletrônica de Varredura , Coelhos , Espectroscopia de Infravermelho com Transformada de Fourier , Árvores/genética
10.
J Biomed Mater Res B Appl Biomater ; 101(7): 1284-93, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23661490

RESUMO

Cytotoxicity and subcutaneous tissue reaction of innovative blends composed by polyvinylidene fluoride and polyvinylidene fluoride-trifluoroethylene associated with natural polymers (natural rubber and native starch) forming membranes were evaluated, aiming its applications associated with bone regeneration. Cytotoxicity was evaluated in mouse fibroblasts culture cells (NIH3T3) using trypan blue staining. Tissue response was in vivo evaluated by subcutaneous implantation of materials in rats, taking into account the presence of necrosis and connective tissue capsule around implanted materials after 7, 14, 21, 28, 35, 60, and 100 days of surgery. The pattern of inflammation was evaluated by histomorphometry of the inflammatory cells. Chemical and morphological changes of implanted materials after 60 and 100 days were evaluated by Fourier transform infrared (FTIR) absorption spectroscopy and scanning electron microscopy (SEM) images. Cytotoxicity tests indicated a good tolerance of the cells to the biomaterial. The in vivo tissue response of all studied materials showed normal inflammatory pattern, characterized by a reduction of polymorphonuclear leukocytes and an increase in mononuclear leukocytes over the time (p < 0.05 Kruskal-Wallis). On day 60, microscopic analysis showed regression of the chronic inflammatory process around all materials. FTIR showed no changes in chemical composition of materials due to implantation, whereas SEM demonstrated the delivery of starch in the medium. Therefore, the results of the tests performed in vitro and in vivo show that the innovative blends can further be used as biomaterials.


Assuntos
Fibroblastos/metabolismo , Hidrocarbonetos Fluorados/farmacologia , Leucócitos Mononucleares/metabolismo , Teste de Materiais , Polivinil/farmacologia , Amido/farmacologia , Compostos de Vinila/farmacologia , Animais , Regeneração Óssea/efeitos dos fármacos , Fibroblastos/patologia , Hidrocarbonetos Fluorados/efeitos adversos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Leucócitos Mononucleares/patologia , Masculino , Camundongos , Células NIH 3T3 , Polivinil/efeitos adversos , Ratos , Ratos Wistar , Amido/efeitos adversos , Compostos de Vinila/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA