Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Ecotoxicology ; 33(4-5): 425-439, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38700807

RESUMO

Due to their natural history and ecological attributes, turtles are excellent organisms for studies of heavy metal contamination. Turtles have a large geographical distribution, occupy different aquatic habitats, and occupy various trophic levels. The present study investigated mercury bioaccumulation in the carnivorous chelonian Chelus fimbriata (Matamata turtle) and Hg biomagnification in relation to its aquatic food chain in the middle Rio Negro, AM-Brazil. Tissue samples of muscle, carapace and claws were collected from 26 C. fimbriata individuals, as well as collections of autotrophic energy sources found in the turtle's aquatic habitat area. The samples were collected in February-March/2014 and analyzed for THg concentrations and carbon (δ13C) and nitrogen (δ15N) stable isotopes. The highest THg levels were found in claws (3780 ng.g-1), carapace (3622 ng.g-1) and muscle (403 ng.g-1), which were found to be significantly different [F(2.73) = 49.02 p < 0.01]. However, THg concentrations in muscle tissue were below the consumption threshold indicated by the WHO and Brazilian Health Ministry. The average δ13C and δ15N values in Matamata samples were -31.7‰ and 11.9‰, respectively. The principal energy source sustaining the food chain of C. fimbriata was found to be terrestrial shrubs, with smaller contributions from emergent aquatic herbaceous plants and algae, while δ15N values showed its trophic position to be two levels above the autotrophic energy sources. There was a positive correlation between THg and turtle size, while a significant relationship was found between THg and δ15N, showing strong biomagnification in the food chain of C. fimbriata: y = 0.21x + 0.46; r2 = 0.45; p < 0.001, for which the slope presented a value of 0.21.


Assuntos
Monitoramento Ambiental , Cadeia Alimentar , Mercúrio , Tartarugas , Poluentes Químicos da Água , Animais , Tartarugas/metabolismo , Brasil , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Mercúrio/análise , Bioacumulação
3.
PeerJ ; 10: e14266, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36540793

RESUMO

Individual dietary specialization is one of the factors that promotes variation in resource use at the individual level. Here we used stable isotope analysis of multiple tissues with different turnover rates to examine the degree of individual specialization in two sub-populations of the predator Cichla temensis inhabiting both fragmented and undammed rivers within the Uatumã River basin of the Amazon. Our results showed that the undammed river provides better conditions to promote individual dietary specialization than the fragmented river. This study contributes to the understanding of how specific life history characteristics of populations of generalist predators are impacted by fragmentation within megadiverse environments such as the Amazon basin.


Assuntos
Ciclídeos , Rios , Animais , Isótopos , Comportamento Predatório , Dieta/veterinária
4.
J Fish Biol ; 101(6): 1530-1539, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36196976

RESUMO

Although many upstream effects of a dam on the trophic ecology of fish have been reported, little is known about their downstream effects on the isotopic niche of Amazonian predator fish. The authors used stable isotope analysis of δ13 C and δ15 N to determine the downstream effects of damming of the Uatumã River on the niche width, carbon energy sources and trophic position of peacock bass Cichla temensis comparing with a free-flowing river in the Amazon basin, Brazil, during the peak flood and early falling water period of 2020. They found that the C. temensis population of the undammed river had a smaller niche width than the C. temensis population of the dammed river, despite the greater number of prey trophic levels utilized and the higher trophic position of C. temensis individuals. The results demonstrate that in both rivers there is a gradual shift in the contribution of prey fish sources to the diet of C. temensis throughout its growth, even among adult individuals. They conclude that the isotopic niche of C. temensis was altered by damming during the period of late high water to early low water in the Uatumã River.


Assuntos
Ciclídeos , Água , Animais , Rios , Carbono , Dieta
5.
PLoS One ; 17(3): e0264490, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35235610

RESUMO

Migratory species are the most important commercial fishes in the Amazon. They are also now the most threatened directly by some combination of overfishing, floodplain deforestation, and dam construction. Limited governmental monitoring and implemented regulations impede adequate management of the fisheries at adequate scale. We summarize the current stock status of the three most heavily exploited long-distance migratory species, which are two goliath catfishes (Brachyplatystoma rousseauxii and B. vaillantii) and the characiform Colossoma macropomum. In addition, we analyze impacts beyond overfishing on these species. Our results indicate: (i) the overfishing trends for these important species are either ominous or indicate the verge of collapse of the commercial fisheries based on them, and (ii) a dangerous synergy between overfishing, hydroelectric dams, and floodplain deforestation further challenge fisheries management of migratory species in the Amazon. We propose eight direct governmental actions as a proactive approach that addresses the main impacts on the fisheries. We consider that the most practical way to assess and manage overfishing of migratory species in the short run in an area as large as the main commercial fishing area in the Amazon is at market sites where enforced regulations can control fish catch. The management of the three species considered here has implications beyond just their sustainability. Their management would represent a paradigm shift where the governments assume their legal responsibilities in fishery management. These responsibilities include regulation enforcement, data collecting, inter-jurisdictional cooperation to protect migratory species at realistic life history scales, mitigation of the Madeira dams to assure goliath catfish passage to the largest western headwater region, and recognition of monitoring and managing wetland deforestation for the protection of fish and other aquatic and terrestrial biodiversity.


Assuntos
Peixes-Gato , Pesqueiros , Animais , Biodiversidade , Peixes-Gato/fisiologia , Conservação dos Recursos Naturais , Peixes
6.
PeerJ ; 6: e5080, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29942707

RESUMO

Understanding environmental biodiversity drivers in freshwater systems continues to be a fundamental challenge in studies of their fish assemblages. The present study seeks to determine the degree to which landscape variables of Amazonian floodplain lakes influences fish assemblages in these environments. Fish species richness was estimated in 15 Amazonian floodplain lakes during the high and low-water phases and correlated with the areas of four inundated wetland classes: (i) open water, (ii) flooded herbaceous, (iii) flooded shrubs and (iv) flooded forest estimated in different radius circular areas around each sampling site. Data were analyzed using generalized linear models with fish species richness, total and guilds as the dependent variable and estimates of buffered landscape areas as explanatory variables. Our analysis identified the significance of landscape variables in determining the diversity of fish assemblages in Amazonian floodplain lakes. Spatial scale was also identified as a significant determinant of fish diversity as landscape effects were more evident at larger spatial scales. In particular, (1) total species richness was more sensitive to variations in the landscape areas than number of species within guilds and (2) the spatial extent of the wetland class of shrubs was consistently the more influential on fish species diversity.

7.
Environ Sci Technol ; 51(24): 14182-14191, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29172464

RESUMO

We investigated the impact of the seasonal inundation of wetlands on methylmercury (MeHg) concentration dynamics in the Amazon river system. We sampled 38 sites along the Solimões/Amazon and Negro rivers and their tributaries during distinct phases of the annual flood-pulse. MeHg dynamics in both basins was contrasted to provide insight into the factors controlling export of MeHg to the Amazon system. The export of MeHg by rivers was substantially higher during high-water in both basins since elevated MeHg concentrations and discharge occurred during this time. MeHg concentration was positively correlated to %flooded area upstream of the sampling site in the Solimões/Amazon Basin with the best correlation obtained using 100 km buffers instead of whole basin areas. The lower correlations obtained with the whole basin apparently reflected variable losses of MeHg exported from upstream wetlands due to demethylation, absorption, deposition, and degradation before reaching the sampling site. A similar correlation between %flooded area and MeHg concentrations was not observed in the Negro Basin probably due to the variable export of MeHg from poorly drained soils that are abundant in this basin but not consistently flooded.


Assuntos
Monitoramento Ambiental , Inundações , Compostos de Metilmercúrio , Rios , Estações do Ano , Poluentes Químicos da Água
8.
PLoS One ; 12(8): e0182254, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28832638

RESUMO

Increased energy demand has led to plans for building many new dams in the western Amazon, mostly in the Andean region. Historical data and mechanistic scenarios are used to examine potential impacts above and below six of the largest dams planned for the region, including reductions in downstream sediment and nutrient supplies, changes in downstream flood pulse, changes in upstream and downstream fish yields, reservoir siltation, greenhouse gas emissions and mercury contamination. Together, these six dams are predicted to reduce the supply of sediments, phosphorus and nitrogen from the Andean region by 69, 67 and 57% and to the entire Amazon basin by 64, 51 and 23%, respectively. These large reductions in sediment and nutrient supplies will have major impacts on channel geomorphology, floodplain fertility and aquatic productivity. These effects will be greatest near the dams and extend to the lowland floodplains. Attenuation of the downstream flood pulse is expected to alter the survival, phenology and growth of floodplain vegetation and reduce fish yields below the dams. Reservoir filling times due to siltation are predicted to vary from 106-6240 years, affecting the storage performance of some dams. Total CO2 equivalent carbon emission from 4 Andean dams was expected to average 10 Tg y-1 during the first 30 years of operation, resulting in a MegaWatt weighted Carbon Emission Factor of 0.139 tons C MWhr-1. Mercury contamination in fish and local human populations is expected to increase both above and below the dams creating significant health risks. Reservoir fish yields will compensate some downstream losses, but increased mercury contamination could offset these benefits.


Assuntos
Ecossistema , América do Sul
9.
Sci Rep ; 7: 41784, 2017 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-28165499

RESUMO

We mapped the inferred long-distance migrations of four species of Amazonian goliath catfishes (Brachyplatystoma rousseauxii, B. platynemum, B. juruense and B. vaillantii) based on the presence of individuals with mature gonads and conducted statistical analysis of the expected long-distance downstream migrations of their larvae and juveniles. By linking the distribution of larval, juvenile and mature adult size classes across the Amazon, the results showed: (i) that the main spawning regions of these goliath catfish species are in the western Amazon; (ii) at least three species-B. rousseauxii, B. platynemum, and B. juruense-spawn partially or mainly as far upstream as the Andes; (iii) the main spawning area of B. rousseauxii is in or near the Andes; and (iv) the life history migration distances of B. rousseauxii are the longest strictly freshwater fish migrations in the world. These results provide an empirical baseline for tagging experiments, life histories extrapolated from otolith microchemistry interpretations and other methods to establish goliath catfish migratory routes, their seasonal timing and possible return (homing) to western headwater tributaries where they were born.


Assuntos
Migração Animal , Peixes-Gato , Fatores Etários , Animais , Geografia , Larva , Dinâmica Populacional , Estações do Ano
10.
Acta amaz ; 44(4): 527-532, Dec. 2014. ilus, map, tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1455216

RESUMO

Sport fishing for peacock bass Cichla spp. in the Brazilian Amazon has increased in popularity and attracts anglers who generate significant economic benefits in rural regions. The sustainability of this fishery is partly dependent on the survival of fish caught through catch-and-release fishing. The objective of this work was to investigate, hooking mortality of Cichla spp., including speckled peacock bass (C. temensis Humbolt), butterfly peacock bass (C. orinocensis Humbolt), and popoca peacock bass (C. monoculus Agassiz) in the basin of the Negro River, the largest tributary of the Amazon River. Fish were caught at two different sites using artificial lures, transported to pens anchored in the river and monitored for 72 hours. A total of 162 individual peacock bass were captured and hooking mortality (mean % ± 95% confidence intervals) was calculated. Mean mortality was 3.5% (± 5.0), 2.3% (± 3.5) and 5.2% (± 10.2) for speckled peacock bass, butterfly peacock bass, and popoca peacock bass, respectively. Lengths of captured fish ranged from 26 to 79 cm (standard length), however, only fish under 42 cm died. This research suggests that catch-and-release sport fishing of peacock bass does not result in substantial mortality in the Negro River basin.


A pesca esportiva de tucunarés Cichla spp., na Amazônia brasileira, aumentou em popularidade nos últimos anos e tem atraído pescadores esportivos que geram benefícios econômicos para essa região. Entretanto, a sustentabilidade dessa pescaria depende em parte da sobrevivência dos peixes capturados por meio da prática do pesque e solte. O objetivo deste trabalho foi avaliar a mortalidade de Cichla spp., incluindo o tucunaré paca (C. temensis Humbolt), o borboleta (C. orinocensis Humbolt) e o popoca (C. monoculus Agassiz) em dois locais na bacia do rio Negro, o maior tributário do rio Amazonas. Os peixes foram capturados por variados tipos de iscas artificiais e posteriormente monitorados em viveiros construídos no próprio rio por 72 horas. Um total de 162 tucunarés foi capturado, e as mortalidades (% ± intervalo de confiança 95%) foram calculadas. A mortalidade foi 3,5% (± 5,0), 2,3% (± 3,2) e 5,2% (±10,2) para o paca, o borboleta e o popoca, respectivamente. O comprimento padrão dos peixes capturados variou de 26 a 79 cm, mas apenas os peixes menores até 42 cm morreram. A pesquisa sugere que a pesca esportiva não causou substancial mortalidade na população de Cichla spp. na bacia do rio Negro.


Assuntos
Animais , Mortalidade , Perciformes , Pesqueiros/estatística & dados numéricos , Brasil
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA