Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(9)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37766309

RESUMO

The search for innovative anti-cancer drugs remains a challenge. Over the past three decades, antibodies have emerged as an essential asset in successful cancer therapy. The major obstacle in developing anti-cancer antibodies is the need for non-immunogenic antibodies against human antigens. This unique requirement highlights a disadvantage to using traditional hybridoma technology and thus demands alternative approaches, such as humanizing murine monoclonal antibodies. To overcome these hurdles, human monoclonal antibodies can be obtained directly from Phage Display libraries, a groundbreaking tool for antibody selection. These libraries consist of genetically engineered viruses, or phages, which can exhibit antibody fragments, such as scFv or Fab on their capsid. This innovation allows the in vitro selection of novel molecules directed towards cancer antigens. As foreseen when Phage Display was first described, nowadays, several Phage Display-derived antibodies have entered clinical settings or are undergoing clinical evaluation. This comprehensive review unveils the remarkable progress in this field and the possibilities of using clever strategies for phage selection and tailoring the refinement of antibodies aimed at increasingly specific targets. Moreover, the use of selected antibodies in cutting-edge formats is discussed, such as CAR (chimeric antigen receptor) in CAR T-cell therapy or ADC (antibody drug conjugate), amplifying the spectrum of potential therapeutic avenues.

2.
Int J Mol Sci ; 23(14)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35887153

RESUMO

Zika virus infections exhibit recurrent outbreaks and can be responsible for disease complications such as congenital Zika virus syndrome. Effective therapeutic interventions are still a challenge. Antibodies can provide significant protection, although the antibody response may fail due to antibody-dependent enhancement reactions. The choice of the target antigen is a crucial part of the process to generate effective neutralizing antibodies. Human anti-Zika virus antibodies were selected by phage display technology. The antibodies were selected against a mimetic peptide based on the fusion loop region in the protein E of Zika virus, which is highly conserved among different flaviviruses. Four rounds of selection were performed using the synthetic peptide in two strategies: the first was using the acidic elution of bound phages, and the second was by applying a competing procedure. After panning, the selected VH and VL domains were determined by combining NGS and bioinformatic approaches. Three different human monoclonal antibodies were expressed as scFvs and further characterized. All showed a binding capacity to Zika (ZIKV) and showed cross-recognition with yellow fever (YFV) and dengue (DENV) viruses. Two of these antibodies, AZ1p and AZ6m, could neutralize the ZIKV infection in vitro. Due to the conservation of the fusion loop region, these new antibodies can potentially be used in therapeutic intervention against Zika virus and other flavivirus illnesses.


Assuntos
Vírus da Dengue , Dengue , Flavivirus , Infecção por Zika virus , Zika virus , Anticorpos Neutralizantes , Anticorpos Antivirais , Reações Cruzadas , Humanos
3.
Int J Mol Sci ; 22(9)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33926148

RESUMO

Autoimmunity may have its origins of early repertoire selection in developmental B cells. Such a primary repertoire is probably shaped by selecting B cells that can efficiently perform productive signaling, stimulated by self-antigens in the bone marrow, such as DNA. In support of that idea, we previously found a V segment from VH10 family that can form antibodies that bind to DNA independent of CDR3 usage. In this paper we designed four antibody fragments in a novel single-chain pre-BCR (scpre-BCR) format containing germinal V gene segments from families known to bind DNA (VH10) or not (VH4) connected to a murine surrogate light chain (SLC), lacking the highly charged unique region (UR), by a hydrophilic peptide linker. We also tested the influence of CDR2 on DNA reactivity by shuffling the CDR2 loop. The scpre-BCRs were expressed in bacteria. VH10 bearing scpre-BCR could bind DNA, while scpre-BCR carrying the VH4 segment did not. The CDR2 loop shuffling hampered VH10 reactivity while displaying a gain-of-function in the nonbinding VH4 germline. We modeled the binding sites demonstrating the conservation of a positivity charged pocket in the VH10 CDR2 as the possible cross-reactive structural element. We presented evidence of DNA reactivity hardwired in a V gene, suggesting a structural mechanism for innate autoreactivity. Therefore, while autoreactivity to DNA can lead to autoimmunity, efficiently signaling for B cell development is likely a trade-off mechanism leading to the selection of potentially autoreactive repertoires.


Assuntos
Região Variável de Imunoglobulina/genética , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/imunologia , Sequência de Aminoácidos/genética , Animais , Anticorpos Antinucleares/genética , Arginina/genética , Arginina/metabolismo , Autoantígenos/genética , Autoimunidade/imunologia , Sequência de Bases/genética , DNA/imunologia , Células Germinativas/imunologia , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/metabolismo , Região Variável de Imunoglobulina/metabolismo , Região Variável de Imunoglobulina/ultraestrutura , Camundongos , Anticorpos de Domínio Único/ultraestrutura , Relação Estrutura-Atividade
4.
Bioinform Biol Insights ; 14: 1177932220915240, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32425512

RESUMO

Phage display is a powerful technique to select high-affinity antibodies for different purposes, including biopharmaceuticals. Next-generation sequencing (NGS) presented itself as a robust solution, making it possible to assess billions of sequences of the variable domains from selected sublibraries. Handling this process, a central difficulty is to find the selected clones. Here, we present the AutomaTed Tool For Immunoglobulin Analysis (ATTILA), a new tool to analyze and find the enriched variable domains throughout a biopanning experiment. The ATTILA is a workflow that combines publicly available tools and in-house programs and scripts to find the fold-change frequency of deeply sequenced amplicons generated from selected VH and VL domains. We analyzed the same human Fab library NGS data using ATTILA in 5 different experiments, as well as on 2 biopanning experiments regarding performance, accuracy, and output. These analyses proved to be suitable to assess library variability and to list the more enriched variable domains, as ATTILA provides a report with the amino acid sequence of each identified domain, along with its complementarity-determining regions (CDRs), germline classification, and fold change. Finally, the methods employed here demonstrated a suitable manner to combine amplicon generation and NGS data analysis to discover new monoclonal antibodies (mAbs).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA