Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Biosens Bioelectron ; 205: 114081, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35217253

RESUMO

In this work, a new electrochemical biosensor was developed using peptides selected by Phage Display as biorecognition phase to Breast Cancer (BC) characterization. Phage clones were selected against MCF-7 (ER-positive BC) proteins, in order to characterize patients with aggressive luminal BC. Biotin-C3 and biotin-H2 peptides were chemically synthesized and validated by flow cytometry, immunofluorescence assays, and ELISA assays, being more reactive to the MCF-7 lineage. Furthermore, a new matrix for the coupling of biomolecules on the surface of graphite electrodes was generated, through electrochemical modification with a new material derived from 3-(3-aminophenyl)propionic acid (3-3-APPA). Electrochemical and morphological characterizations were carried out, and the mechanism of electropolymerization of poly(3-3-APPA) was proposed, in which the carboxylate groups are kept in the structure of the formed polymer. Then, a biosensor was developed by immobilizing the biotin-C3 and biotin-H2 peptides in the SPE/poly(3-3-APPA)/avidin system for the detection of BC tumor markers in serological samples. Finally, peptides were validated using samples from patients with BC and Benign Breast Disease. Biotin-C3 peptide characterized luminal BC according to p53 status and to HER2 expression, being the biosensor a better strategy when compared to ELISA test. This new biosensor will open a new perspective for a rapid and electrochemical platform for the characterization of BC and its molecular subtypes.


Assuntos
Técnicas Biossensoriais , Neoplasias da Mama , Neoplasias da Mama/diagnóstico , Técnicas Eletroquímicas , Eletrodos , Feminino , Humanos , Peptídeos/química , Propionatos
2.
Talanta ; 234: 122617, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34364426

RESUMO

A group of infectious and parasitic diseases with prevalence in tropical and subtropical regions of the planet, especially in places with difficult access, internal conflicts, poverty, and low visibility from the government and health agencies are classified as neglected tropical diseases. While some well-intentioned isolated groups are making the difference on a global scale, the number of new cases and deaths is still alarming. The development and employment of low-cost, miniaturized, and easy-to-use devices as biosensors could be the key to fast diagnosis in such areas leading to a better treatment to further eradication of such diseases. Therefore, this review contains useful information regarding the development of such devices in the past ten years (2010-2020). Guided by the updated list from the World Health Organization, the work evaluated the new trends in the biosensor field applied to the early detection of neglected tropical diseases, the efficiencies of the devices compared to the traditional techniques, and the applicability on-site for local distribution. So, we focus on Malaria, Chagas, Leishmaniasis, Dengue, Zika, Chikungunya, Schistosomiasis, Leprosy, Human African trypanosomiasis (sleeping sickness), Lymphatic filariasis, and Rabies. Few papers were found concerning such diseases and there is no available commercial device in the market. The works contain information regarding the development of point-of-care devices, but there are only at proof of concepts stage so far. Details of electrode modification and construction of electrochemical biosensors were summarized in Tables. The demand for the eradication of neglected tropical diseases is increasing. The use of biosensors is pivotal for the cause, but appliable devices are scarce. The information present in this review can be useful for further development of biosensors in the hope of helping the world combat these deadly diseases.


Assuntos
Técnicas Biossensoriais , Hanseníase , Malária , Doenças Parasitárias , Infecção por Zika virus , Zika virus , Humanos , Doenças Negligenciadas/diagnóstico , Doenças Parasitárias/diagnóstico , Doenças Parasitárias/epidemiologia
3.
Biosens Bioelectron ; 169: 112573, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32905944

RESUMO

In this work, a dual detection system based on an impedimetric immunosensor was developed for the first time for the simultaneous detection of anti-Trypanosoma cruzi and anti-Leishmania infantum antibodies in human and dog serum samples. The IBMP 8.1 and rLci1A/rLci2B recombinant antigens were immobilized over the surface of dual screen-printed carbon electrodes (W1 and W2) modified with poly (4-hydroxyphenylacetic acid). Under optimized conditions, the immunosensor recognized specific interactions for anti-T. cruzi antibodies up to a dilution of 1:10,240 and for anti-L. infantum up to 1:5120 in canine serum samples. Relative standard deviation (RSD) values of 2.8% for W1 and 3.6% for W2 were obtained for T. cruzi (W1) and L. infantum antigen (W2) samples in three different electrodes for 3 days (n = 9). The immunosensor was stored at 4 °C for 8 weeks, with activity retention of 70.2% in W1 and 78.2% in W2. The results using the recombinant proteins revealed that all antigens discriminated between negative and positive samples (p < 0.0001) in both dog and human groups, as well as no cross-reactivity could be detected among sera with other infections. With this approach, immunosensor-based diagnostic tests achieved 100% accuracy, suggesting that the antigens are eligible to enter Phase-II studies.


Assuntos
Técnicas Biossensoriais , Doenças do Cão , Leishmania infantum , Leishmaniose Visceral , Animais , Anticorpos Antiprotozoários , Antígenos de Protozoários , Cães , Imunoensaio , Leishmaniose Visceral/diagnóstico , Leishmaniose Visceral/veterinária , Sistemas Automatizados de Assistência Junto ao Leito
4.
Anal Biochem ; 553: 15-23, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29777681

RESUMO

This paper reports the electrosynthesis and characterisation of a polymeric film derived from 2-hydroxybenzamide over a graphite electrode and its application as an enzymatic biosensor for the determination and quantification of the pesticide fenitrothion. The material was analysed by scanning electron microscopy and its electrochemical properties characterised by cyclic voltammetry and electrochemical impedance spectroscopy. The enzyme tyrosinase was immobilised over the modified electrode by the drop and dry technique. Catechol was determined by direct reduction of biocatalytically formed o-quinone by employing the flow injection analysis technique. The analytical characteristics of the proposed sensor were optimised as follows: phosphate buffer 0.050 M at pH 6.5, flow rate 5.0 mL min-1, sample injection volume 150 µL, catechol concentration 1.0 mM and maximum inhibition time by fenitrothion of 6 min. The biosensors showed a linear response to pesticide concentration from 0.018 to 3.60 µM. The limit of detection and limit of quantification were calculated as 4.70 nM and 15.9 nM (RSD < 2.7%), respectively. The intra- and inter-electrode RSDs were 3.35% (n = 15) and 8.70% (n = 7), respectively. In addition, water samples spiked with the pesticide showed an average recovery of 97.6% (±1.53).


Assuntos
Benzamidas/química , Técnicas Eletroquímicas/métodos , Eletrodos , Fenitrotion/análise , Grafite/química , Inseticidas/análise , Monofenol Mono-Oxigenase/química , Técnicas Biossensoriais/métodos , Polimerização
5.
Braz. arch. biol. technol ; 54(6): 1217-1222, Nov.-Dec. 2011. ilus, tab
Artigo em Inglês | LILACS | ID: lil-608444

RESUMO

The properties of poly(4-aminophenol) modified graphite electrode as material for the immobilization of acetylcholinesterase were investigated by the Cyclic Voltammetry, Electrochemical Impedance Spectroscopy and Atomic Force Microscopy. The polymer was deposited on graphite electrode surface by the oxidation of 4-aminophenol and then acetylcholinesterase was immobilized on the surface of the electrode. The biosensor coupled in the continuous flow system was employed for the detection of dichlorvos. The detection and quantification limits were 0.8 and 2.4 μmol L-1 dichlorvos, respectively. Graphite electrodes modified with the poly(4-aminophenol) showed to be an efficient and promising material for immobilization of acetylcholinesterase enzyme. The proposed method requires simple parts which are easy to build, involves only one biosensor and the potentiometric detection is simple.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA