Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 18101, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103455

RESUMO

In this study, PROP adsorption was investigated using activated carbon derived from Bactris Guineensis residues and physical statistical modeling. The characterization results indicate high specific surface areas (624.72 and 1125.43 m2 g-1) and pore diameters (2.703 and 2.321 nm) for the peel and stone-activated carbon, respectively. Adsorption equilibrium was investigated at different temperatures (298 to 328 K), and it was found that the adsorption capacity increased with temperature, reaching maximum values of 168.7 and 112.94 mg g-1 for the peel and stone-activated carbon, respectively. The application of physical statistical modeling indicates that a monolayer model with one energy site is adequate for describing both systems, with an R2 above 0.986 and a low BIC of 20.021. According to the steric parameters, the density of molecules per site tends to increase by 116.9% for the stone and 61.6% for the peel. In addition, the model indicates that the number of molecules decreases with increasing temperature from 1.36 to 0.81 and from 1.03 to 0.82. These results indicate that temperature controls the number of receptor sites and the orientation in which propranolol is adsorbed at the surface. The adsorption energies were similar for both systems (approximately 10 kJ mol-1), which indicates that the adsorption occurred due to physical interactions. Finally, the application of thermodynamic potential functions indicates that the maximum entropy is reached at concentrations of half-saturation (Ce 3.85 and 4.6 mg L-1), which corresponds to 1.60 × 10-18 and 1.86 × 10-18 kJ mol-1 K-1 for the stone and peel, respectively. After this point, the number of available sites tends to decrease, which indicates the stabilization of the system. The Gibbs energy tended to decrease with increasing concentration at equilibrium, reaching minimum values of - 1.73 × 10-19 and - 1.99 × 10-19 kJ mol-1, respectively. Overall, the results obtained here further elucidate how the adsorption of propranolol occurs for different activated carbons from the same source.

2.
Environ Sci Pollut Res Int ; 31(18): 27221-27239, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38507163

RESUMO

Green roofs are promising tools in sustainable urban planning, offering benefits such as stormwater management, energy savings, aesthetic appeal, and recreational spaces. They play a crucial role in creating sustainable and resilient cities, providing both environmental and economic advantages. Despite these benefits, concerns persist about their impact on water quality, especially for non-potable use, as conflicting results are found in the literature. This study presents a comparative analysis of the quantity and quality of water drained from an extensive green roof against an adjacent conventional rooftop made of fiber-cement tiles in subtropical Brazil. Over a 14-month period, the water drained from both roofs was evaluated based on physical (turbidity, apparent color, true color, electrical conductivity, total solids, total dissolved solids, suspended solids), chemical (pH, phosphate, total nitrogen, nitrate, nitrite, chlorides, sulfates, and BOD), microbiological (total coliforms and E. coli), and metal (copper, iron, zinc, lead, and chrome) concentration parameters. The discharge from the green roof was 40% lower than its counterpart measured at the control roof, while the water quality from both roofs was quite similar. However, the green roof acted as source of chlorides, electrical conductivity, color, BOD, total hardness, E. coli, phosphate, sulfate, and turbidity. On the other side, the green roof neutralized the slightly acidic character of rainwater, showcasing its potential to mitigate the effects of acid rain. The study's results underscored that the water discharged from the green roof generally aligned with non-potable standards mandated by both Brazilian and international regulations. However, the findings emphasized the imperative need for pre-treatment of the green roof discharge before its utilization, specifically adjusting parameters like turbidity, BOD, total coliforms, and E. coli, which were identified as crucial to ensure water safety and compliance with non-potable use standards.


Assuntos
Qualidade da Água , Brasil , Microbiologia da Água
3.
Environ Sci Pollut Res Int ; 30(42): 95326-95337, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37542690

RESUMO

Emerging contaminants were used during the COVID-19 pandemic, including ivermectin. Studies that limit the optimal adsorption parameters of ivermectin are scarce in the literature. In this study, we analyzed the adsorption of ivermectin with a high surface area and porosity charcoal. Isotherms were better fitted to the Koble-Corrigan model. The maximum capacity was 203 µg g-1 at 328 K. Thermodynamics indicated a spontaneous and endothermic behavior. The equilibrium was quickly reached within the first few minutes regardless of the ivermectin concentration. The linear driving force (LDF) model fitted the kinetic data (qexp = 164.8 µg g-1; qpred = 148.1 µg g-1) at 100 µg L-1 of ivermectin. The model coefficient (KLDF) and diffusivity (Ds) increased with increasing drug concentration. Two sloped curves were obtained in the column experiments, with a breakthrough time of 415 min and 970 min. The capacity of the column (qeq) was 76 µg g-1. The length of the mass transfer zone was 9.04 and 14.13 cm. Therefore, it can be concluded that the adsorption of ivermectin is highly sensitive to changes in pH, being favored in conditions close to neutrality. Commercial activated charcoal was highly efficient in removing the studied compound showing high affinity with very fast kinetics and a good performance in continuous operation mode.


Assuntos
COVID-19 , Poluentes Químicos da Água , Humanos , Carvão Vegetal/química , Ivermectina , Adsorção , Pandemias , Poluentes Químicos da Água/química , Termodinâmica , Cinética , Concentração de Íons de Hidrogênio
4.
Environ Sci Pollut Res Int ; 30(18): 52498-52513, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36840881

RESUMO

The Calophyllum inophyllum species annually produces a large volume of cylindrical fruits, which accumulate on the soil because they do not have nutritional value. This study sought to enable the use of this biomass by producing activated biochar with zinc chloride as an activating agent for further application as an adsorbent in batch and fixed bed columns. Different methodologies were used to characterize the precursor and the pyrolyzed material. Morphological changes were observed with the emergence of new spaces. The carbonaceous material had a surface area of 468 m2 g-1, Dp = 2.7 nm, and VT = 3.155 × 10-1 cm3 g-1. Scientific and isothermal studies of the adsorption of the diuron were conducted at the natural pH of the solution and adsorbent dosage of 0.75 g L-1. The kinetic curves showed a good fit to the Avrami fractional order model, with equilibrium reached after 150 min, regardless of the diuron concentration. The Liu heterogeneous surface model well represented the isothermal curves. By raising the temperature, adsorption was encouraged, and at 318 K, the Liu Qmax was reached at 250.1 mg g-1. Based on the Liu equilibrium constant, the nonlinear van't Hoff equation was employed, and the ΔG° were < 0 from 298 to 328 K; the process was exothermic nature (ΔH0 = -46.40 kJ mol-1). Finally, the carbonaceous adsorbent showed good removal performance (63.45%) compared to a mixture containing different herbicides used to control weeds. The stoichiometric column capacity (qeq) was 13.30 and 16.61 mg g-1 for concentrations of 100 and 200 mg L-1, respectively. The length of the mass transfer zone was 5.326 cm (100 mg L-1) and 4.946 cm (200 mg L-1). This makes employing the leftover fruits of the Calophyllum inophyllum species as biomass for creating highly porous adsorbents a very effective and promising option.


Assuntos
Calophyllum , Poluentes Químicos da Água , Diurona , Água , Biomassa , Carvão Vegetal/química , Adsorção , Cinética , Concentração de Íons de Hidrogênio , Termodinâmica
5.
Environ Sci Pollut Res Int ; 30(14): 42416-42426, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36646979

RESUMO

Using groundwater for human consumption is an alternative for places with no nearby surface water resources. Fluoride is commonly found in groundwater, and the consumption of this water for a prolonged time in concentrations that exceed established limits by WHO and Brazilian legislation on water potability (1.5 mg L-1) can cause harmful problems to human health. For this reason, fluoride removal is an important step before water consumption. In this work, activated alumina was impregnated with Fe-Al-La composite and employed for the first time as an adsorbent for fluoride removal from an aqueous environment. XRD, SEM/EDS, FT-IR, and point of zero charge were used to characterize the prepared adsorbent. The adsorptive performance of adsorbent material was investigated by employing a 23-central composite design (CCD), and the obtained experimental conditions were pH = 6.5 and adsorbent dosage = 3.0 g L-1. A maximum adsorption capacity of 8.17 mg g-1 at 298 K and pH = 6.5 was achieved by Langmuir isotherm to describe the adsorption. The kinetic model that better described experimental data was Avrami, with the kav parameter increasing with the initial concentration from 0.076 to 0.231 (min-1)nav. The nature of adsorption was found to be homogeneous, and it occurs in a monolayer. The fluoride removal performance for the prepared adsorbent was higher than granular activated alumina, showing that supporting Fe-Al-La at the alumina surface increased its fluoride adsorption capacity from 16 to 42% at the same experimental conditions. Finally, the influence of co-existing ions Cl-, SO42-, and NO3- was evaluated in fluoride adsorption, and the material presented great selectivity to fluoride. Thus, Fe-Al-La/AA adsorbent is a promising material for fluoride removal from water.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Humanos , Fluoretos/química , Óxido de Alumínio/química , Espectroscopia de Infravermelho com Transformada de Fourier , Água , Adsorção , Cinética , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/química
6.
Environ Manage ; 71(4): 795-808, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36087146

RESUMO

In this study, the residual pods of the forest species Erythrina speciosa were carbonized with ZnCl2 to obtain porous activated carbon and investigated for the adsorptive removal of the drug paracetamol (PCM) from water. The PCM adsorption onto activated carbon is favored at acidic solution pH. The isothermal studies confirmed that increasing the temperature from 298 to 328 K decreased the adsorption capacity from 65 mg g-1 to 50.4 mg g-1 (C0 = 175 mg L-1). The Freundlich model showed a better fit of the equilibrium isotherms. Thermodynamic studies confirmed the exothermic nature (ΔH0 = -39.1066 kJ mol-1). Kinetic data indicates that the external mass transfer occurs in the first minutes followed by the surface diffusion, considering that the linear driving force model described the experimental data. The application of the material in the treatment of a simulated effluent with natural conditions was promising, presenting a removal of 76.45%. Therefore, it can be concluded that the application of residual pods of the forest species Erythrina speciosa carbonized with ZnCl2 is highly efficient in the removal of the drug paracetamol and also in mixtures containing other pharmaceutical substances.


Assuntos
COVID-19 , Erythrina , Poluentes Químicos da Água , Carvão Vegetal/química , Poluentes Químicos da Água/química , Adsorção , Acetaminofen , Cinética , Analgésicos , Concentração de Íons de Hidrogênio
7.
Environ Sci Pollut Res Int ; 30(4): 9688-9698, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36057705

RESUMO

The study analyzed the potential of leaf powder prepared from the residual leaves of the species Sansevieria trifasciata, as a potential adsorbent for methylene blue (MB) removal. The equilibrium was reached fast for almost all concentrations after 60 min, obtaining the maximum capacity of 139.98 mg g-1 for 200 mg L-1. The increase in temperature disfavored the dye adsorption, with the maximum adsorption capacity of 225.8 mg g-1, observed for 298 K. The thermodynamic parameters confirmed that the adsorption process is spontaneous and exothermic. A direct sloping curve was established for the fixed bed, with breakthrough time (tb), column stoichiometric capacities (qeq), and the mass transfer zone lengths (Zm) were 1430, 1130, and 525 min; 60.48, 187.01, and 322.65 mg g-1; and 8.81, 11.28, and 10.71 cm, for 100, 200, and 500 mg L-1, respectively. Furthermore, in a mixture of several dyes, the adsorbent obtained the removal of 51% of the color.


Assuntos
Sansevieria , Poluentes Químicos da Água , Purificação da Água , Corantes/química , Adsorção , Poluentes Químicos da Água/química , Termodinâmica , Azul de Metileno/química , Cinética , Concentração de Íons de Hidrogênio
8.
Molecules ; 27(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36431881

RESUMO

Brazil's production and consumption of açai pulp (Euterpe oleracea) occur on a large scale. Most of the fruit is formed by the pit, which generates countless tons of residual biomass. A new purpose for this biomass, making its consumption highly sustainable, was presented in this study, where activated carbon (AC) was produced with zinc chloride for later use as an adsorbent. AC carbon formed by carbon and with a yield of 28 % was satisfactorily used as an adsorbent in removing the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). Removal efficiency was due to the highly porous surface (Vp = 0.467 cm3 g-1; Dp = 1.126 nm) and good surface área (SBET = 920.56 m2 g-1). The equilibrium data fit the Sips heterogeneous and homogeneous surface model better. It was observed that the increase in temperature favored adsorption, reaching a maximum experimental capacity of 218 mg g-1 at 328 K. The thermodynamic behavior indicated a spontaneous, favorable, and endothermic behavior. The magnitude of the enthalpy of adsorption was in agreement with the physical adsorption. Regardless of the herbicide concentration, the adsorbent displayed fast kinetics, reaching equilibrium within 120 min. The linear driving force (LDF) model provided a strong statistical match to the kinetic curves. AC with zinc chloride (ZnCl2), created from leftover açai biomass, is a potential alternative as an adsorbent for treating effluents containing 2,4-D.


Assuntos
Euterpe , Herbicidas , Porosidade , Frutas , Carvão Vegetal , Fenoxiacetatos , Sementes , Ácido 2,4-Diclorofenoxiacético
9.
Molecules ; 27(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36364399

RESUMO

The production and consumption of cassava (Manihot esculenta) occur in several places worldwide, producing large volumes of waste, mostly in the form of bark. This study sought to bring a new purpose to this biomass through producing activated carbon to use as an adsorbent to remove the herbicide Diuron from water. It was observed that the carbon contains the functional groups of methyl, carbonyl, and hydroxyl in a strongly amorphous structure. The activated carbon had a surface area of 613.7 m2 g-1, a pore volume of 0.337 cm3 g-1, and a pore diameter of 1.18 nm. The Freundlich model was found to best describe the experimental data. It was observed that an increase in temperature favored adsorption, reaching a maximum experimental capacity of 222 mg g-1 at 328 K. The thermodynamic parameters showed that the adsorption was spontaneous, favorable, and endothermic. The enthalpy of adsorption magnitude was consistent with physical adsorption. Equilibrium was attained within 120 min. The linear driving force (LDF) model provided a strong statistical match to the kinetic curves. Diffusivity (Ds) and the model coefficient (KLDF) both increased with a rise in herbicide concentration. The adsorbent removed up to 68% of pollutants in a simulated effluent containing different herbicides. Activated carbon with zinc chloride (ZnCl2), produced from leftover cassava husks, was shown to be a viable alternative as an adsorbent for the treatment of effluents containing not only the herbicide Diuron but also a mixture of other herbicides.


Assuntos
Herbicidas , Manihot , Poluentes Químicos da Água , Diurona , Adsorção , Carvão Vegetal/química , Herbicidas/química , Biomassa , Poluentes Químicos da Água/química , Cinética , Termodinâmica , Concentração de Íons de Hidrogênio
10.
Environ Sci Pollut Res Int ; 29(45): 68547-68554, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35543787

RESUMO

The valorization of agro-industrial residues can be improved through their full use, making the production of second-generation ethanol viable. In this scenario, hydrolyzed soybean straw generated from a subcritical water process was applied to the basic fuchsin adsorption. At pH eight, a high adsorption capacity was obtained. The mass test results showed that basic fuchsin's removal and adsorption capacity could be maximized with an adsorbent dosage of 0.9 g L-1. The linear driving force model was suitable for predicting the kinetic profile, and the kinetic curves showed that equilibrium was reached with only 30 min of contact time. Besides, the Langmuir model was the best to predict the adsorption isotherms. The thermodynamic parameters revealed a spontaneous and endothermic process. At 328 K, there is maximum adsorption capacity (72.9 mg g-1). Therefore, it can be stated that this material could be competitive in terms of adsorption capacity coupled with the idea of full use of waste.


Assuntos
Poluentes Químicos da Água , Água , Adsorção , Etanol , Concentração de Íons de Hidrogênio , Cinética , Corantes de Rosanilina , Glycine max , Termodinâmica , Água/química , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA