Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
BMC Infect Dis ; 24(1): 751, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075335

RESUMO

BACKGROUND: Dengue fever remains a significant public health challenge in tropical and subtropical regions, with its transmission dynamics being influenced by both environmental factors and human mobility. The Dominican Republic, a biodiversity hotspot in the Caribbean, has experienced recurrent dengue outbreaks, yet detailed understanding of the virus's transmission pathways and the impact of climatic factors remains limited. This study aims to elucidate the recent transmission dynamics of the dengue virus (DENV) in the Dominican Republic, utilizing a combination of genomic sequencing and epidemiological data analysis, alongside an examination of historical climate patterns. METHODS: We conducted a comprehensive study involving the genomic sequencing of DENV samples collected from patients across different regions of the Dominican Republic over a two-year period. Phylogenetic analyses were performed to identify the circulation of DENV lineages and to trace transmission pathways. Epidemiological data were integrated to analyze trends in dengue incidence and distribution. Additionally, we integrated historical climate data spanning several decades to assess trends in temperature and their potential impact on DENV transmission potential. RESULTS: Our results highlight a previously unknown north-south transmission pathway within the country, with the co-circulation of multiple virus lineages. Additionally, we examine the historical climate data, revealing long-term trends towards higher theoretical potential for dengue transmission due to rising temperatures. CONCLUSION: This multidisciplinary study reveals intricate patterns of dengue virus transmission in the Dominican Republic, characterized by the co-circulation of multiple DENV lineages and a novel transmission pathway. The observed correlation between rising temperatures and increased dengue transmission potential emphasizes the need for integrated climate-informed strategies in dengue control efforts. Our findings offer critical insights for public health authorities in the Dominican Republic and similar settings, guiding resource allocation and the development of preparedness strategies to mitigate the impacts of climate change on dengue transmission.


Assuntos
Clima , Vírus da Dengue , Dengue , Filogenia , Sorogrupo , República Dominicana/epidemiologia , Dengue/epidemiologia , Dengue/transmissão , Dengue/virologia , Humanos , Vírus da Dengue/genética , Vírus da Dengue/classificação , Surtos de Doenças
2.
Emerg Microbes Infect ; 13(1): 2362941, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38813649

RESUMO

Chikungunya virus (CHIKV) has emerged as a significant public health concern due to its rapid spread and potential for causing debilitating epidemics. In Argentina, the virus has garnered attention since its introduction to the Americas in 2013, due to its growing incidence and impact in neighbouring countries. Here we present a comprehensive analysis of the spatiotemporal dynamics of CHIKV in Argentina, focusing on the evolutionary trajectory of its genetic variants. Through a combination of active surveillance, screening of historical and recent samples, and whole-genome sequencing, we traced the evolutionary history of CHIKV lineages circulating within the country. Our results reveal that two distinct genotypes circulated in Argentina: The Asian lineage during the 2016 epidemic and the ECSA lineage in 2023. This distribution reflects the dominance of particular variants across Latin America. Since 2023, the ECSA lineage has led to a surge in cases throughout the Americas, marking a significant shift. The replacement of lineages in the American region constitutes a major epidemiological event, potentially affecting the dynamics of virus transmission and the clinical outcomes in impacted populations. The spatiotemporal analysis highlights CHIKV's distribution across Argentina and underscores the significant role of human mobility, especially when considering recent epidemics in neighbouring countries such as Paraguay and Uruguay, which have facilitated the spread and introduction of the viral strain into different districts. By integrating epidemiological data with genomic insights, we elucidate the patterns of virus dissemination, highlighting key areas of transmission and potential factors contributing to its spread.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Evolução Molecular , Genótipo , Filogenia , Argentina/epidemiologia , Vírus Chikungunya/genética , Vírus Chikungunya/classificação , Vírus Chikungunya/isolamento & purificação , Febre de Chikungunya/epidemiologia , Febre de Chikungunya/virologia , Febre de Chikungunya/transmissão , Humanos , Genoma Viral , América Latina/epidemiologia , Sequenciamento Completo do Genoma , Análise Espaço-Temporal , Variação Genética
3.
Emerg Microbes Infect ; 13(1): 2332672, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38517841

RESUMO

Uruguay experienced its first Chikungunya virus outbreak in 2023, resulting in a significant burden to its healthcare system. We conducted analysis based on real-time genomic surveillance (30 novel whole genomes) to offer timely insights into recent local transmission dynamics and eco-epidemiological factors behind its emergence and spread in the country.


Assuntos
Vírus Chikungunya , Vírus Chikungunya/genética , Uruguai/epidemiologia , América/epidemiologia , Surtos de Doenças , Genômica
4.
Nat Commun ; 15(1): 1837, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418815

RESUMO

Latin America and Caribbean (LAC) regions were an important epicenter of the COVID-19 pandemic and SARS-CoV-2 evolution. Through the COVID-19 Genomic Surveillance Regional Network (COVIGEN), LAC countries produced an important number of genomic sequencing data that made possible an enhanced SARS-CoV-2 genomic surveillance capacity in the Americas, paving the way for characterization of emerging variants and helping to guide the public health response. In this study we analyzed approximately 300,000 SARS-CoV-2 sequences generated between February 2020 and March 2022 by multiple genomic surveillance efforts in LAC and reconstructed the diffusion patterns of the main variants of concern (VOCs) and of interest (VOIs) possibly originated in the Region. Our phylogenetic analysis revealed that the spread of variants Gamma, Lambda and Mu reflects human mobility patterns due to variations of international air passenger transportation and gradual lifting of social distance measures previously implemented in countries. Our results highlight the potential of genetic data to reconstruct viral spread and unveil preferential routes of viral migrations that are shaped by human mobility patterns.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , América Latina/epidemiologia , Pandemias , Filogenia , COVID-19/epidemiologia , Região do Caribe/epidemiologia
5.
medRxiv ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38405721

RESUMO

We employ a multidisciplinary approach, integrating genomics and epidemiology, to uncover recent dengue virus transmission dynamics in the Dominican Republic. Our results highlight a previously unknown north-south transmission pathway within the country, with the co-circulation of multiple virus lineages. Additionally, we examine the historical climate data, revealing long-term trends towards higher theoretical potential for dengue transmission due to rising temperatures. These findings provide information for targeted interventions and resource allocation, informing as well towards preparedness strategies for public health agencies in mitigating climate and geo-related dengue risks.

6.
Viruses ; 16(1)2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38257783

RESUMO

In recent months, Paraguay has been grappled with a notable monkeypox outbreak, straining its healthcare infrastructure. The sudden spike in cases underlines the imperative need for a comprehensive understanding of the virus's dynamics, enabling the formulation of robust containment measures. To address this challenge, our team joined forces with the Central Public Health Laboratory of Asunción and the Pan-American Health Organization. Through this collaboration, we employed portable whole-genome sequencing combined with phylodynamic analysis to examine the MPXV strains circulating in Paraguay. Our genomic monitoring approach has produced the first 30 whole-genome sequences from Paraguay, all of which were identified under lineage IIb. Interestingly, our data suggest that the origin of the monkeypox virus in Paraguay at the beginning of 2022 can be traced back to Brazil. This introduction subsequently catalyzed further community spread that was further exacerbated by several independent introduction events as time progressed. These findings not only shed light on the transmission patterns of the virus but also highlight the pivotal role such insights play in sculpting effective response strategies and driving impactful public health measures. Furthermore, our findings strongly advocate intensified surveillance at international borders, ensuring swift detection and proactive countermeasures against potential outbreaks in the future.


Assuntos
Epidemias , Mpox , Humanos , Mpox/epidemiologia , Paraguai/epidemiologia , Genômica , Surtos de Doenças
7.
medRxiv ; 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37732223

RESUMO

We report the first whole-genome sequences of Dengue Virus type I genotypes I and V from Uruguay, including the first cases ever reported in the country. Through timely genomic analysis, identification of these genotypes was possible, aiding in timely public health responses and intervention strategies to mitigate the impact of dengue outbreaks.

8.
medRxiv ; 2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37646000

RESUMO

Uruguay experienced its first Chikungunya virus outbreak in 2023, resulting in a significant burden to its healthcare system. We conducted analysis based on real-time genomic surveillance (30 novel whole genomes) to offer timely insights into recent local transmission dynamics and eco-epidemiological factors behind its emergence and spread in the country.

10.
IUBMB Life ; 75(12): 972-982, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37470229

RESUMO

The insertion of genes into mitochondria by biolistic transformation is currently only possible in the yeast Saccharomyces cerevisiae and the algae Chlamydomonas reinhardtii. The fact that S. cerevisiae mitochondria can exist with partial (ρ- mutants) or complete deletions (ρ0 mutants) of mitochondrial DNA (mtDNA), without requiring a specific origin of replication, enables the propagation of exogenous sequences. Additionally, mtDNA in this organism undergoes efficient homologous recombination, making it well-suited for genetic manipulation. In this review, we present a summarized historical overview of the development of biolistic transformation and discuss iconic applications of the technique. We also provide a detailed example on how to obtain transformants with recombined foreign DNA in their mitochondrial genome.


Assuntos
DNA Mitocondrial , Saccharomyces cerevisiae , DNA Mitocondrial/genética , Saccharomyces cerevisiae/genética , Biolística/métodos , Transformação Genética , Mitocôndrias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA