Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Pharmaceuticals (Basel) ; 15(5)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35631336

RESUMO

Bioactive peptides are chemical compounds created through the covalent bonding of amino acids, known as amide or peptide bonds. Due to their unusual chemistry and various biological effects, marine bioactive peptides have garnered considerable research. The effectiveness of a bioactive marine peptide is attributed to its structural features, such as amino acid content and sequence, which vary depending on the degree of action. Cyclic peptides combine several favorable properties such as good binding affinity, target selectivity and low toxicity that render them an attractive modality for the development of therapeutics. The apratoxins are a class of molecules formed by a series of cyclic depsipeptides with potent cytotoxic activities. The objective of this research is to pursue a computational prospection of the molecular structures and properties of several cylopeptides of marine origin with potential therapeutic applications. The methodology will be based on the determination of the chemical reactivity descriptors of the studied molecules through the consideration of the Conceptual DFT model and validation of a particular model chemistry, MN12SX/Def2TZVP/H2O. These studies will be complemented by a determination of the pharmacokinetics and ADMET parameters by resorting to certain cheminformatics tools.

3.
Mar Drugs ; 20(2)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35200627

RESUMO

As a continuation of our research on the chemical reactivity, pharmacokinetics and ADMET properties of cyclopeptides of marine origin with potential therapeutic abilities, in this work our already presented integrated molecular modeling protocol has been used for the study of the chemical reactivity and bioactivity properties of the Veraguamides A-G family of marine natural drugs. This protocol results from the estimation of the conceptual density functional theory (CDFT) chemical reactivity descriptors together with several chemoinformatics tools commonly considered within the process of development of new therapeutic drugs. CP-CDFT is a branch of computational chemistry and molecular modeling dedicated to the study of peptides, and it is a protocol that allows the estimation with great accuracy of the CDFT-based reactivity descriptors and the associated physical and chemical properties, which can aid in determining the ability of the studied peptides to behave as potential useful drugs. Moreover, the superiority of the MN12SX density functional over other long-range corrected density functionals for the prediction of chemical and physical properties in the presence of water as the solvent is clearly demonstrated. The research was supplemented with an investigation of the bioactivity of the molecular systems and their ADMET (absorption, distribution, metabolism, excretion, and toxicity) parameters, as is customary in medicinal chemistry. Some instances of the CDFT-based chemical reactivity descriptors' capacity to predict the pKas of peptides as well as their potential as AGE inhibitors are also shown.


Assuntos
Organismos Aquáticos/metabolismo , Produtos Biológicos/farmacocinética , Depsipeptídeos/farmacocinética , Produtos Biológicos/química , Produtos Biológicos/toxicidade , Quimioinformática , Teoria da Densidade Funcional , Depsipeptídeos/química , Depsipeptídeos/toxicidade , Modelos Moleculares
4.
Sci Rep ; 12(1): 506, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017576

RESUMO

Aspergillipeptide D is a cyclic pentapeptide isolated from the marine gorgonian Melitodes squamata-derived fungus Aspergillus sp. SCSIO 41501 that it has been shown to present moderate activity against herpes virus simplex type 1 (HSV-1). Thus, this paper presents the results of a computational study of this cyclopentapeptide's chemical reactivity and bioactivity properties using a CDFT-based computational peptidology (CDFT-CP) methodology, which is derived from combining chemical reactivity descriptors derived from Conceptual Density Functional Theory (CDFT) and some Cheminformatics tools which may be used. This results in an improvement of the virtual screening procedure by a similarity search allowing the identification and validation of the known ability of the peptide to act as a possible useful drug. This was followed by an examination of the drug's bioactivity and pharmacokinetics indices in relation to the ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) characteristics. The findings provide further evidence of the MN12SX density functional's superiority in proving the Janak and Ionization Energy theorems using the proposed KID approach. This has proven to be beneficial in accurately predicting CDFT reactivity characteristics, which aid in the understanding of chemical reactivity. The Computational Pharmacokinetics study revealed the potential ability of Aspergillipeptide D as a therapeutic drug through the interaction with different target receptors. The ADMET indices confirm this assertion through the absence of toxicity and good absorption and distribution properties.


Assuntos
Antozoários/microbiologia , Aspergillus/metabolismo , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Animais , Aspergillus/química , Aspergillus/isolamento & purificação , Células CACO-2 , Quimioinformática , Teoria da Densidade Funcional , Humanos , Estrutura Molecular , Peptídeos Cíclicos/efeitos adversos , Peptídeos Cíclicos/metabolismo
5.
ChemistryOpen ; 10(11): 1142-1149, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34806828

RESUMO

Homophymines A-E and A1-E1 are bioactive natural cyclodepsipeptides with a complex molecular architecture. These molecules could have a potential use as antimicrobial, antiviral, and anticancer substances. We have carried out a computational study of the properties of this family of marine peptides using a CDFT-based Computational Peptidology (CDFT-CP) methodology that results from the combination of the chemical reactivity descriptors that arise from conceptual Density Functional Theory (CDFT) together with cheminformatics tools. The latter can be used to estimate the associated physicochemical parameters and to improve the process of virtual screening through a similarity search. Using this approach, the ability of the peptides to behave as a potentially useful drugs can be investigated. An analysis of their bioactivity and pharmacokinetics indices related to the ADMET (Absorption, Distribution, Metabolism, Excretion and Toxicity) features has also been carried out.


Assuntos
Depsipeptídeos , Peptídeos Cíclicos , Fenômenos Químicos , Quimioinformática , Teoria da Densidade Funcional
6.
Front Chem ; 9: 708364, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34458236

RESUMO

This research presents the outcomes of a computational determination of the chemical reactivity and bioactivity properties of two plant cyclopeptides isolated from Rosaceae through the consideration of Computational Peptidology (CP), a protocol employed previously in the research of similar molecular systems. CP allows the prediction of the global and local descriptors that are the integral foundations of Conceptual Density Functional Theory (CDFT) and which could help in getting in the understanding of the chemical reactivity properties of the two plant cyclopeptides under study, hoping that they could be related to their bioactivity. The methodology based on the Koopmans in DFT (KID) approach and the MN12SX/Def2TZVP/H2O model chemistry has been successfully validated. Various Chemoinformatics tools have been used to improve the process of virtual screening, thus identifying some additional properties of these two plant cyclopeptides connected to their ability to behave as potentially useful drugs. With the further objective of analyzing their bioactivity, the CP protocol is complemented with the estimation of some useful parameters related to pharmacokinetics, their predicted biological targets, and the Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) parameters related to the bioavailability of the two plant cyclopeptides under study are also reported.

7.
Mar Drugs ; 18(9)2020 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-32962305

RESUMO

This work presents the results of a computational study of the chemical reactivity and bioactivity properties of the members of the theopapuamides A-D family of marine peptides by making use of our proposed methodology named Computational Peptidology (CP) that has been successfully considered in previous studies of this kind of molecular system. CP allows for the determination of the global and local descriptors that come from Conceptual Density Functional Theory (CDFT) that can give an idea about the chemical reactivity properties of the marine natural products under study, which are expected to be related to their bioactivity. At the same time, the validity of the procedure based on the adoption of the KID (Koopmans In DFT) technique, as well as the MN12SX/Def2TZVP/H2O model chemistry is successfully verified. Together with several chemoinformatic tools that can be used to improve the process of virtual screening, some additional properties of these marine peptides are identified related to their ability to behave as useful drugs. With the further objective of analyzing their bioactivity, some useful parameters for future QSAR studies, their predicted biological targets, and the ADMET (Absorption, Distribution, Metabolism, Excretion and Toxicity) parameters related to the theopapuamides A-D pharmacokinetics are also reported.


Assuntos
Quimioinformática/métodos , Biologia Computacional/métodos , Depsipeptídeos/química , Organismos Aquáticos , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacocinética , Teoria da Densidade Funcional , Depsipeptídeos/isolamento & purificação , Depsipeptídeos/farmacocinética , Modelos Moleculares , Relação Quantitativa Estrutura-Atividade
8.
Molecules ; 25(18)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32932850

RESUMO

A methodology based on the concepts that arise from Density Functional Theory named Conceptual Density Functional Theory (CDFT) was chosen for the calculation of some global and local reactivity descriptors of the Discodermins A-H family of marine peptides through the consideration of the KID (Koopmans in DFT) technique that was successfully used in previous studies of this kind of molecular systems. The determination of active sites of the studied molecules for different kinds of reactivities was achieved by resorting to some CDFT-based descriptors like the Fukui functions as well as the Parr functions derived from Molecular Electron Density Theory (MEDT). A few properties identified with their ability to behave as a drug and the bioactivity of the peptides considered in this examination were acquired by depending on a homology model by studying the correlation with the known bioactivity of related molecules in their interaction with various biological receptors. With the further object of analyzing their bioactivity, some parameters of usefulness for future QSAR studies, their predicted biological targets, and the ADME (Absorption, Distribution, Metabolism, and Excretion) parameters related to the Discodermins A-H pharmacokinetics are also reported.


Assuntos
Proteínas de Anfíbios/química , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos/química , Domínio Catalítico , Cátions , Biologia Computacional , Teoria da Densidade Funcional , Elétrons , Concentração de Íons de Hidrogênio , Modelos Químicos , Simulação de Dinâmica Molecular , Relação Quantitativa Estrutura-Atividade , Software , Solventes/química
9.
Molecules ; 24(18)2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31514433

RESUMO

A well-behaved model chemistry previously validated for the study of the chemical reactivity of peptides was considered for the calculation of the molecular properties and structures of the Papuamide family of marine peptides. A methodology based on Conceptual Density Functional Theory (CDFT) was chosen for the determination of the reactivity descriptors. The molecular active sites were associated with the active regions of the molecules related to the nucleophilic and electrophilic Parr functions. Finally, the drug-likenesses and the bioactivity scores for the Papuamide peptides were predicted through a homology methodology relating them with the calculated reactivity descriptors, while other properties such as the pKas were determined following a methodology developed by our group.


Assuntos
Organismos Aquáticos/química , Fenômenos Químicos , Teoria da Densidade Funcional , Depsipeptídeos/química , Disponibilidade Biológica , Depsipeptídeos/farmacocinética , Modelos Moleculares
10.
Heliyon ; 5(8): e02335, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31463408

RESUMO

A methodology based on the concepts that arise from Density Functional Theory (CDFT) was chosen for the calculation of the global and local reactivity descriptors of the Phallotoxin family of fungal peptides. The determination of the active sites for the molecules has been achieved by resorting some descriptors within Molecular Electron Density Theory (MEDT) like the Dual Descriptor and the Parr functions. Phallosacin has been found as the most reactive of the peptides on the basis of the calculated Global Reactivity Descriptors. The pKas of the seven studied peptides were established using a proposed relationship between this property and the calculated Global Hardness. The bioactivity properties of the peptides considered in this study were obtained by resorting to a homology model by comparison with the bioactivity of related molecules in their interaction with different receptors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA