Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 137: 109360, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33233063

RESUMO

The engineering of ingredients emerges as a strategy to design emulsified products aiming to control the lipid hydrolysis. In this context, oil-in-water (O/W) emulsions composed of different oil phases (Sunflower oil - LCT or NEOBEE® 1053 - MCT) and stabilized by whey protein isolate - WPI (1% w/w), Tween 80 - T80 (1% w/w) or varied ratios of WPI/T80 (0.9975%WPI/0.0025%T80; 0.75%WPI/0.25%T80; 0.5%WPI/0.5%T80 w/w) were produced and submitted to simulated gastrointestinal conditions. The lipolysis of LCT was influenced by the fatty acid chain length and emulsifier composition, while only the fatty acid chain length affected the lipolysis of MCT. The emulsions produced with LCT and 1%WPI or 09975%WPI/00025%T80 showed the highest release rate of free fatty acids (FFAs), but similar result was observed for the 0.5%WPI/0.5%T80 system. In the 0.5%WPI/0.5%T80 mixture, WPI and T80 worked together and achieved an improved performance during the gastric (stability similar as 1%T80 emulsion) and small intestinal phases (lipolysis similar as 1%WPI emulsion). The rational selection of ingredients is useful to design emulsions with improved performance as a delivery system since the emulsion structural stability during digestion, the oil type and interaction between lipase-interface had a marked impact on the efficiency of lipid digestion.


Assuntos
Emulsificantes , Tensoativos , Emulsões , Polissorbatos , Proteínas do Soro do Leite
2.
Carbohydr Polym ; 227: 115344, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31590871

RESUMO

An in vitro digestibility protocol was used to elucidate the role of different emulsifying polysaccharides particles on the lipid digestion rate of oil-in-water Pickering emulsions. Emulsions stabilized by cellulose crystals (CCrys), cellulose nanofibers (CNFs), chitosan particles and a conventional emulsifier (Tween 80) were evaluated concerning microstructure, droplet size, zeta potential and free fatty acids released during digestion. After gastric step, the high positive charge of chitosan-stabilized emulsions favored the droplets disaggregation resulting in a mild effect of bridging flocculation by particles sharing and displacement of the size curve distribution toward lower size. After passing through the intestinal condition, these emulsions presented few droplets and chitosan aggregates with a monomodal size distribution and high mean droplet size (D4,3 = 197 ±â€¯8 µm). On the other hand, Tween 80, CCrys and CNFs were able to inhibit lipid digestion and no changes on mean droplet size were observed following intestinal step. CNFs-stabilized emulsion showed the lowest lipid digestion, whereas the strong adherence of the CCrys particles onto the droplet interface became them resistant to displacement by surface-active components (i.e. bile salts and lipase enzyme). On the other hand, a slow lipid hydrolysis could be observed in chitosan-stabilized emulsions promoted by competition between chitosan aggregates and intestinal fluids by the oil droplet interface. Studying the emulsions stabilized using different polysaccharides particles on gastrointestinal conditions we could elucidate important features for their potential application as control systems of lipid digestion rate, as well as, as delivery systems of lipophilic compounds.


Assuntos
Celulose/química , Quitosana/química , Lipídeos/química , Nanofibras/química , Polissorbatos/química , Digestão , Emulsões , Hidrólise
3.
J Agric Food Chem ; 67(1): 13-18, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30556391

RESUMO

Great efforts have been made to design emulsions considering the need to perform an effective encapsulation, protection, vehiculation, and bioaccessibility of lipophilic compounds. This task can be achieved by manipulating the structure of the emulsion based on the choice of the processes and ingredients of the aqueous phase, interface, and lipid matrix. Thus, the main focus of this perspective is to provide insights into the use of ingredient engineering in manipulating/building emulsion structures that enhance lipophilic compound release and bioaccessibility.


Assuntos
Emulsificantes/química , Lipídeos/química , Animais , Digestão , Emulsificantes/metabolismo , Emulsões/química , Emulsões/metabolismo , Humanos , Metabolismo dos Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA