Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Appl Spectrosc ; : 37028241268158, 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39094004

RESUMO

The aim of this work was the development and morphological/chemical, spectroscopic, and structural characterization of titanium dioxide, niobium pentoxide, and titanium:niobium (Ti:Nb) oxides, as well as materials modified with ruthenium (Ru) with the purpose of providing improvement in photoactivation capacity with visible sunlight radiation. The new materials synthesized using the sol-gel methodology were characterized using the following techniques: scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), photoacoustic spectroscopy (PAS), and X-ray diffraction (XRD). The SEM-EDS analyses showed the high purity of the bases, and the modified samples showed the adsorption of ruthenium on the surface with the crystals' formation and visible agglomerates for higher calcination temperature. The nondestructive characterization of PAS in the ultraviolet visible region suggested that increasing calcination temperature promoted changes in chemical structures and an apparent decrease in gap energy. The separation of superimposed absorption bands referring to charge transfers from the ligand to the metal and the nanodomains of the transition metals suggested the possible absorption centers present at the absorption threshold of the analyzed oxides. Through the XRD analysis, the formation of stable phases such as T-Nb16.8O42, o-Nb12O29, and rutile was observed at a lower temperature level, suggesting pore induction and an increase in surface area for the oxides studied, at a calcination temperature below that expected by the related literature. In addition, the synthesis with a higher temperature level altered the previously existing morphologies of the Ti:Nb, base and modified with Ru, forming the new mixed crystallographic phases Ti2Nb10O29 and TiNb2O7, respectively. As several semiconductor oxide applications aim to reduce costs with photoexcitation under visible light, the modified Ti:Ru oxide calcined at a temperature of 800 °C and synthesized according to the sol-gel methodology used in this work is suggested as the optimum preparation point. This study presented the formation of a stable crystallographic phase (rutile), a significant decrease in gap energy (2.01 eV), and a visible absorption threshold (620 nm).

2.
J Environ Sci Health B ; 59(2): 50-61, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38054847

RESUMO

In this work, a comparison was made between the synthesis of niobium-based materials (Nb2O5), both in terms of material characterization and catalytic performance. The methods used were chemical mixtures: modified sol-gel and Pechini. The materials were calcined at different temperatures (753, 873 and 993K) and characterized by the following techniques: photoacousticspectroscopy (PAS), zero charge point (pHPZC), scanning electron microscopy (SEM/EDS), thermogravimetric analysis (TGA/DTG) and X-ray diffraction (XRD). The photocatalytic process was carried out to evaluate the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) under UV radiation (250 W mercury vapor lamp) and different experimental conditions. In addition, to better understand the influence of parameters such as pH, catalyst concentration (0.2, 0.5 and 0.8 g L-1) and calcination temperature, a Design of Experiments (DoE) was used. The results indicated that despite having similar structures and phases in the XRD analysis, the morphology presents two distinct surfaces, due to the preparation method. Differences in the synthesis method affected the catalytic activity in the parameters studied. Although the zero charge point values are close (6.18-6.36), we observed differences in the band gap depending on the calcination temperature. In the optimal condition studied, the catalyst prepared by the sol-gel method obtained the best results.


Assuntos
Herbicidas , Nióbio/química , Raios Ultravioleta , Microscopia Eletrônica de Varredura , Ácido 2,4-Diclorofenoxiacético
3.
Artigo em Inglês | MEDLINE | ID: mdl-36069164

RESUMO

This study describes the synthesis of Cu/Nb2O5, Fe/Nb2O5, and Cu-Fe/Nb2O5 catalysts obtained by incorporating copper and/or iron metals into niobium pentoxide (Nb2O5). The new materials were characterized by the following techniques: Thermogravimetric Analysis (TA), surface and pore analysis, X-ray diffractometry (XRD), and Fourier Transform Infrared Spectroscopy (FT-IR). The catalyst was applied in the photocatalytic degradation of salicylic acid (SA). The influence of different parameters (calcined temperature, pH, and metal addition) on the photocatalytic reaction was evaluated. The results indicated that catalysts containing copper were more active and pH influenced the SA degradation process. SA removal results indicated that Cu/Nb2O5 photocatalyst presented a 1.5 fold higher degradation after 120 min in comparison to Cu-Fe/Nb2O5 and 4.6 fold higher than Fe/Nb2O5 catalyst, all them calcined at 400 °C. In tests carried out in the presence of formic acid, increasing the pH from about 3 to 7 allowed an almost 3.4-fold increase in SA degradation for the Cu-Fe/Nb2O5 catalyst calcined at 400 °C.


Assuntos
Cobre , Nióbio/química , Óxidos/química , Catálise , Ferro/química , Metais , Ácido Salicílico , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA