Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Environ Res ; 258: 119282, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823611

RESUMO

The Villa Victoria dam is one of the most important storage reservoirs in Mexico since it distributes water to more than 20 million inhabitants in the Metropolitan Zone of Mexico City. In this dam, the common carp (Cyprinus carpio) is an important food resource for the inhabitants, so the aim of this work was to evaluate the oxidative damage (lipoperoxidation, oxidized proteins, antioxidant enzymes activity and gene expression), AChE, embryotoxicity and behavioral changes in C. carpio embryos and larvae exposed to water from Villa Victoria dam for 24, 48, 72 and 96 h. The embryotoxicity was evaluated trough the General Morphology Score (GMS) and the teratogenic index. Behavioral changes in basal locomotor activity and thigmotaxis were evaluated in a DanioVision, Noldus ™. An increase in lipid and protein oxidation as well as modification of CAT, SOD and GPx enzymatic activity was observed during the exposure times. The GMS indicated a low development in the embryos, the teratogenic index was less than 1, however teratogenic effects as yolk edema, fin malformation, head malformation and scoliosis were observed. In parallel, an increase in AChE activity and gene expression was observed reflecting changes in distance traveled of the basal locomotor activity and thigmotaxis at the sampling points. In conclusion, pollutants in water from Villa Victoria dam caused oxidative damage, changes in SOD, CAT, GPx and AChE activity as well as embryotoxicity and modifications in the behavior of C. carpio larvae. This study demonstrates the need to implement restoration programs for this reservoir since, contamination in the Villa Victoria dam could eventually endanger aquatic life and human health.


Assuntos
Acetilcolinesterase , Carpas , Embrião não Mamífero , Larva , Estresse Oxidativo , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Estresse Oxidativo/efeitos dos fármacos , México , Acetilcolinesterase/metabolismo , Carpas/embriologia , Carpas/metabolismo , Larva/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos
2.
Sci Total Environ ; 931: 172947, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38703837

RESUMO

This study delves into the eco-endocrinological dynamics concerning the impact of dexamethasone (DXE) on the interrenal axis in juvenile carp, Cyprinus carpio. Through a comprehensive analysis, we investigated the effects of DXE exposure on oxidative stress, biochemical biomarkers, gene expression, and bioaccumulation within the interrenal axis. Results revealed a concentration-dependent escalation of cellular oxidation biomarkers, including 1) hydroperoxides content (HPC), 2) lipid peroxidation level (LPX), and 3) protein carbonyl content (PCC), indicative of heightened oxidative stress. Concurrently, the activity of critical antioxidant enzymes, superoxide dismutase (SOD), and catalase (CAT), significantly increased, underscoring the organism's response to oxidative insult. Notable alterations were observed in biochemical biomarkers, particularly Gamma-glutamyl-transpeptidase (GGT) and alkaline phosphatase (ALP) activity, with GGT displaying a significant decrease with increasing DXE concentrations. Gene expression analysis revealed a significant upregulation of stress and inflammation response genes, as well as those associated with sensitivity to superoxide ion presence and calcium signaling, in response to DXE exposure. Furthermore, DXE demonstrated a concentration-dependent presence in interrenal tissue, with consistent bioconcentration factors observed across all concentrations tested. These findings shed light on the physiological and molecular responses of juvenile carp to DXE exposure, emphasizing the potential ecological implications of DXE contamination in aquatic environments. Understanding these dynamics is crucial for assessing the environmental impact of glucocorticoid pollutants and developing effective management strategies to mitigate their adverse effects on aquatic ecosystems.


Assuntos
Carpas , Dexametasona , Estresse Oxidativo , Poluentes Químicos da Água , Animais , Carpas/metabolismo , Carpas/fisiologia , Poluentes Químicos da Água/toxicidade , Biomarcadores/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Rim/metabolismo , Rim/efeitos dos fármacos
3.
Environ Pollut ; 349: 123997, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38636837

RESUMO

Current and thorough information on the ecotoxicological consequences of pharmaceuticals is accessible globally. However, there remains a substantial gap in knowledge concerning the potentially toxic effects of COVID-19 used drugs, individually and combined, on aquatic organisms. Given the factors above, our investigation assumes pivotal importance in elucidating whether or not paracetamol, dexamethasone, metformin, and their tertiary mixtures might prompt histological impairment, oxidative stress, and apoptosis in the liver of zebrafish. The findings indicated that all treatments, except paracetamol, augmented the antioxidant activity of superoxide dismutase (SOD) and catalase (CAD), along with elevating the levels of oxidative biomarkers such as lipid peroxidation (LPX), hydroperoxides (HPC), and protein carbonyl content (PCC). Paracetamol prompted a reduction in the activities SOD and CAT and exhibited the most pronounced toxic response when compared to the other treatments. The gene expression patterns paralleled those of oxidative stress, with all treatments demonstrating overexpression of bax, bcl2, and p53. The above suggested a probable apoptotic response in the liver of the fish. Nevertheless, our histological examinations revealed that none of the treatments induced an apoptotic or inflammatory response in the hepatocytes. Instead, the observed tissue alterations encompassed leukocyte infiltration, sinusoidal dilatation, pyknosis, fatty degeneration, diffuse congestion, and vacuolization. In summary, the hepatic toxicity elicited by COVID-19 drugs in zebrafish was less pronounced than anticipated. This attenuation could be attributed to metformin's antioxidant and hormetic effects.


Assuntos
Acetaminofen , Fígado , Metformina , Estresse Oxidativo , Peixe-Zebra , Animais , Fígado/efeitos dos fármacos , Fígado/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Acetaminofen/toxicidade , Metformina/farmacologia , Dexametasona/farmacologia , COVID-19 , Apoptose/efeitos dos fármacos , Tratamento Farmacológico da COVID-19 , Superóxido Dismutase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Catalase/metabolismo , Poluentes Químicos da Água/toxicidade
4.
Sci Total Environ ; 905: 167391, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37758136

RESUMO

Fluoxetine (FLX), a selective serotonin reuptake inhibitor (SSRI), is consistently introduced into the environment due to its ongoing consumption and inadequate removal by wastewater treatment plants. As a result, the scientific community has displayed a keen interest in investigating the potential toxicological effects associated with this medication. Nevertheless, there is a scarcity of available data regarding the impact of FLX on blood parameters. With this in mind, this study aimed to evaluate the potential toxicological consequences of FLX at environmentally significant concentrations (5, 16, and 40 ng/L) following a 96-hour acute exposure blood parameters in Danio rerio fish. Moreover, the investigation encompassed an assessment of oxidative stress parameters to determine whether the drug could induce disruptions in the REDOX status of the fish. The findings unveiled that FLX prompted the induction of oxidative stress in various organs of the fish, encompassing the liver, gut, brain, and gills. Notably, the gills and brain exhibited heightened susceptibility to the drug's effects compared to other organs. Furthermore, following acute exposure to FLX, there was an upregulation of antioxidant-related genes (sod, cat, gpx, nrf1, and nrf2), thereby providing additional evidence supporting the induction of oxidative stress in the organs of the fish. Lastly, FLX significantly impacted the customary values of various blood parameters, including glucose, blood urea nitrogen, alanine aminotransferase, alkaline phosphatase, red blood cell count, hemoglobin, and hematocrit. Thus, it can be inferred that FLX harmed the overall health status of the fish, resulting in the development of liver disease, anemia, and other associated illnesses.


Assuntos
Fluoxetina , Peixe-Zebra , Animais , Fluoxetina/toxicidade , Peixe-Zebra/fisiologia , Inibidores Seletivos de Recaptação de Serotonina/toxicidade , Estresse Oxidativo , Antioxidantes/farmacologia
5.
Sci Total Environ ; 898: 165528, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37451451

RESUMO

In recent years and as a result of the Covid-19 pandemic, the consumption of dexamethasone (DXE) has increased. This favors that this corticosteroid is highly released in aquatic environments, generating deleterious effects in aquatic organisms. The information on the toxic effects of DXE in the environment is still limited. Thus, the objective of this work was to determine whether DXE at short-term exposure can cause alterations to embryonic development and alteration of oxidative stress-related gene expression patterns in Cyprinus carpio. For this purpose, common carp embryos (2 hpf) were exposed to realistic concentrations of DXE until 96 hpf. Alterations to embryonic development were evaluated at 12, 24, 48, 72 and 96 hpf. In addition, oxidative stress in carp embryos at 72 and 96 hpf was evaluated by cellular oxidation biomarkers (lipoperoxidation level, hydroperoxide and carbonyl protein content) and antioxidant enzymes activities (superoxide dismutase and catalase). Oxidative stress-related gene expression (sod, cat and gpx1) was also evaluated. Our results showed that DXE concentrations above 35 ng/L are capable of producing alterations to embryonic development in 50 % of the embryo population. Furthermore, DXE was able to induce alterations such as scoliosis, hypopigmentation, craniofacial malformations, pericardial edema and growth retardation, leading to the death of half of the population at 50 ng/L of DXE. Concerning oxidative stress, the results demonstrated that DXE induce oxidative damage on the embryos of C. carpio. In conclusion, DXE is capable of altering embryonic development and generating oxidative stress in common carp C. carpio.


Assuntos
COVID-19 , Carpas , Poluentes Químicos da Água , Animais , Humanos , Carpas/metabolismo , Bioacumulação , Pandemias , Peroxidação de Lipídeos , Poluentes Químicos da Água/toxicidade , Biomarcadores/metabolismo , Tratamento Farmacológico da COVID-19 , Estresse Oxidativo , Antioxidantes/metabolismo , Desenvolvimento Embrionário , Expressão Gênica , Dexametasona/toxicidade
6.
Sci Total Environ ; 894: 165016, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37348709

RESUMO

Caffeine (CAF) is an alkaloid, which acts as a central nervous system (CNS) stimulant drug. In recent years, CAF has been recurrently detected in water bodies, generating deleterious effects in aquatic organisms. The information on the toxic effects of CAF in the environment is still limited. Thus, the objective of this work was to determine whether CAF at environmentally relevant concentrations (CAF concentrations were selected based on studies on the worldwide occurrence of this compound and on the toxicity of CAF in aquatic species) is capable of inducing alterations to embryonic development and alteration of oxidative stress-related gene expression patterns in Cyprinus carpio. For this purpose, common carp embryos (2 hpf) were exposed to realistic concentrations of CAF until 96 hpf. Alterations to embryonic development and teratogenic effects were evaluated at 12, 24, 48, 72 and 96 hpf. In addition, oxidative stress in carp embryos at 72 and 96 hpf was evaluated by cellular oxidation biomarkers (lipoperoxidation level, hydroperoxide content and carbonyl protein content) and antioxidant enzymes activities (superoxide dismutase and catalase). Oxidative stress-related gene expression (sod, cat and gpx1) was also evaluated. Our results showed that CAF concentrations above 500 ng/L are capable of producing teratogenic effects. Furthermore, CAF was able to induce alterations such cardiac malformations, somite alterations, pericardial edema and chorda malformations. Concerning oxidative stress, the results demonstrated that CAF induce oxidative damage on the embryos of C. carpio. Our outcomes also showed up-regulations in genes related to antioxidant activity sod, cat and gpx by CAF exposure. In conclusion CAF at environmentally relevant concentrations is able to alter the embryonic development of common carp by the oxidative stress pathway. Based on the above evidence, it can be inferred that acute exposure to CAF can lead to a toxic response that significantly harms fish's health, adversely affecting their essential organs' functioning.


Assuntos
Carpas , Teratogênese , Poluentes Químicos da Água , Animais , Carpas/metabolismo , Cafeína/toxicidade , Bioacumulação , Peroxidação de Lipídeos , Poluentes Químicos da Água/toxicidade , Biomarcadores/metabolismo , Estresse Oxidativo , Antioxidantes/metabolismo , Expressão Gênica
7.
Sci Total Environ ; 893: 164906, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37327895

RESUMO

The variety of activities carried out within hospitals results in their final discharges being considered hotspots for the emission of emerging pollutants. Hospital effluents contain different substances capable of altering the health of ecosystems and biota, furthermore, little research has been done to elucidate the adverse effects of these anthropogenic matrices. Taking this into account, herein we aimed to establish whether exposure to different proportions (2 %, 2.5 %, 3 %, and 3.5 %) of hospital effluent treated by hospital wastewater treatment plant (HWWTP) can induce oxidative stress, behavioral alterations, neurotoxicity, and disruption of gene expression in Danio rerio brain. Our results demonstrate that the hospital effluent under-study induces an anxiety-like state and alters swimming behavior, as fish exhibited increased freezing episodes, erratic movements and traveled less distance than the control group. In addition, after exposure we observed a meaningful rise in biomarkers related to oxidative damage, such as protein carbonyl content (PCC), lipoperoxidation level (LPX), hydroperoxide content (HPC), as well as an increase in enzyme antioxidant activities of catalase (CAT), and superoxide dismutase (SOD) upon short-term exposure. Moreover, we discovered an inhibition of acetylcholinesterase (AChE) activity in a hospital effluent proportion-dependent manner. Regarding gene expression, a significant disruption of genes related to antioxidant response (cat, sod, nrf2), apoptosis (casp6, bax, casp9), and detoxification (cyp1a1) was observed. In conclusion, our outcomes suggest that hospital effluents enhance the emergence of oxidative molecules, and promote a highly oxidative environment at the neuronal level that favors the inhibition of AChE activity, which consequently explains the anxiety-like behavior observed in D. rerio adults. Lastly, our research sheds light on possible toxicodynamic mechanism by which these anthropogenic matrices may trigger damage in D. rerio brain.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Antioxidantes/metabolismo , Carbonilação Proteica , Acetilcolinesterase/metabolismo , Ecossistema , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Hospitais , Poluentes Químicos da Água/análise
8.
Chemosphere ; 330: 138729, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37080469

RESUMO

Bisphenol A (BPA) is a micro-pollutant found in various environmental matrices at concentrations as low as ng/L. Recent studies have shown that this compound can cause oxidative damage and neurotoxic effects in aquatic organisms. However, there is a lack of research investigating the effects of BPA at environmentally relevant concentrations. Therefore, this study aimed to assess the neurotoxic effects of acute BPA exposure (96 h) at environmentally relevant concentrations (220, 1180, and 1500 ng/L) in adult zebrafish (Danio rerio). The Novel Tank trial was used to evaluate fish swimming behavior, and our results indicate that exposure to 1500 ng/L of BPA reduced the total distance traveled and increased freezing time. Furthermore, the evaluation of biomarkers in the zebrafish brain revealed that BPA exposure led to the production of reactive oxygen species and increased acetylcholinesterase activity. Gene expression analysis also indicated the overexpression of mbp, α1-tubulin, and manf in the zebrafish brain. Based on our findings, we concluded that environmentally relevant concentrations of BPA can cause anxiety-like behavior and neurotoxic effects in adult zebrafish.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Acetilcolinesterase/genética , Acetilcolinesterase/metabolismo , Compostos Benzidrílicos/toxicidade , Compostos Benzidrílicos/metabolismo , Estresse Oxidativo , Encéfalo/metabolismo , Expressão Gênica , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
9.
Environ Sci Pollut Res Int ; 30(3): 6950-6964, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36018407

RESUMO

One of the most important causes of disease and premature death in the world is environmental pollution. The presence of pollutants in both water and air contributes to the deterioration of the health of human populations. The Mexico City Metropolitan Area is one of the most populous and affected by air pollution worldwide; in addition, in recent years there has been a growing demand for water, so urban reservoirs such as the Madin dam are vital to meet the demand. However, this reservoir is highly polluted due to the urban settlements around it. Therefore, the aim of the present study was to evaluate oxidative stress in clinically healthy subjects by means of the degree of lipoperoxidation, as well as the modification of serum enzyme levels, such as alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and lactate dehydrogenase associated with air and drinking water pollutants from three zones of the Mexico City Metropolitan Area, two of them related to Madin Dam. This descriptive cross-sectional study was conducted between March 2019 and September 2021 in 142 healthy participants (age range 18-65 years). Healthy subjects were confirmed by their medical history. The results showed that chronic exposure to air (SO2) and water pollutants (Al and Fe) was significantly associated with elevated levels of lipoperoxidation. There was evidence that contamination from the Madín dam can generate oxidative stress and affect the health status of people who receive water from this reservoir or who consume fish that inhabit it.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Hepatopatias , Poluentes da Água , Adolescente , Adulto , Idoso , Humanos , Pessoa de Meia-Idade , Adulto Jovem , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Estudos Transversais , Monitoramento Ambiental , México , Estresse Oxidativo , Projetos Piloto , Água
10.
Sci Total Environ ; 852: 158503, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36058320

RESUMO

Microplastics (MPs) alone may endanger the health and fitness of aquatic species through different mechanisms. However, the harmful effects of these when mixed with other emerging contaminants require additional research. Herein, we aimed to determine whether a mixture of MPs with metformin (MET) or guanylurea (GUA) might induce embryotoxicity and oxidative stress in Danio rerio. Upon exposure to mixtures, our results showed MPs reduced the mortality rate of MET and GUA in embryos. Moreover, the severity and the rate of malformations were also decreased in all mixtures with MPs. Concerning oxidative stress, our findings indicated MET, GUA, MPs, and the mixtures increased the levels of lipoperoxidation, hydroperoxide content, and protein carbonyl content in D. rerio larvae. However, the oxidative damage induced in all mixtures was lower than that produced by both drugs alone. Thus, it is likely that the accumulation of MPs avoided the entrance of MET and GUA into the embryos. Once the embryo hatched, MPs did only remain accumulated in the yolk sac of larvae and did not translocate to other organs. Our risk assessment analysis confirmed that MPs shrunk the damage produced by MET and GUA. In a nutshell, MPs mitigate the embryotoxic damage of metformin and guanylurea in D. rerio by blocking their entrance.


Assuntos
Metformina , Poluentes Químicos da Água , Animais , Microplásticos , Peixe-Zebra/metabolismo , Poliestirenos/toxicidade , Plásticos/toxicidade , Peróxido de Hidrogênio/metabolismo , Carbonilação Proteica , Poluentes Químicos da Água/metabolismo , Larva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA