Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nanomaterials (Basel) ; 13(20)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37887952

RESUMO

Myc and Max are essential proteins in the development of prostate cancer. They act by dimerizing and binding to E-box sequences. Disrupting the Myc:Max heterodimer interaction or its binding to E-box sequences to interrupt gene transcription represent promising strategies for treating cancer. We designed novel pMyc and pMax peptides from reference sequences, and we evaluated their ability to bind specifically to E-box sequences using an electrophoretic mobility shift assay (EMSA). Then, we assembled nanosystems (NSs) by coupling pMyc and pMax peptides to AuNPs, and determined peptide conjugation using UV-Vis spectroscopy. After that, we characterized the NS to obtain the nanoparticle's size, hydrodynamic diameter, and zeta potential. Finally, we evaluated hemocompatibility and cytotoxic effects in three different prostate adenocarcinoma cell lines (LNCaP, PC-3, and DU145) and a non-cancerous cell line (Vero CCL-81). EMSA results suggests peptide-nucleic acid interactions between the pMyc:pMax dimer and the E-box. The hemolysis test showed little hemolytic activity for the NS at the concentrations (5, 0.5, and 0.05 ng/µL) we evaluated. Cell viability assays showed NS cytotoxicity. Overall, results suggest that the NS with pMyc and pMax peptides might be suitable for further research regarding Myc-driven prostate adenocarcinomas.

2.
Polymers (Basel) ; 15(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37688159

RESUMO

Using cytotoxic reducing and stabilizing agents in the synthesis of gold nanoparticles (AuNPs) limits their use in biomedical applications. One strategy to overcome this problem is using "green" synthesis methodologies using polysaccharides. In the present study, we propose a green methodology for synthetizing AuNPs with mesquite gum (MG) as a reducing agent and steric stabilizer in Gold(III) chloride trihydrate aqueous solutions to obtain biocompatible nanoparticles that can be used for biomedical applications. Through this method, AuNPs can be produced without using elevated temperatures or pressures. For synthetizing gold nanoparticles coated with mesquite gum (AuNPs@MG), Gold(III) chloride trihydrate was used as a precursor, and mesquite gum was used as a stabilizing and reducing agent. The AuNPs obtained were characterized using UV-Vis spectroscopy, dynamic light scattering, transmission electron microscopy, scanning transmission electron microscopy, and FT-IR spectroscopy. The stability in biological media (phosphate buffer solution), cytotoxicity (MTT assay, hematoxylin, and eosin staining), and hemocompatibility (Hemolysis assay) were measured at different concentrations and exposure times. The results showed the successful synthesis of AuNPs@MG with sizes ranging from 3 to 30 nm and a zeta potential of -31 mV. The AuNPs@MG showed good colloidal stability in PBS (pH 7.4) for up to 24 h. Finally, cytotoxicity assays showed no changes in cell metabolism or cell morphology. These results suggest that these gold nanoparticles have potential biomedical applications because of their low cytotoxicity and hemotoxicity and improved stability at a physiological pH.

3.
Oncol Lett ; 23(3): 103, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35154434

RESUMO

Cell-penetrating peptides (CPPs) are small peptides from natural sources or designed from other protein sequences that can penetrate cell membranes. This property has been used in biomedicine to add them to biomolecules to improve their capacity for cell internalization and as a guidance tool for specific cell types. CPPs have been shown to enhance cellular uptake in vitro and in vivo, improving the efficacy of anticancer drugs such as doxorubicin and paclitaxel, while also limiting their cytotoxic effects on healthy cells and tissues. The current study reviews the internalization and major therapeutic results achieved from the functionalization of nanosystems with CPPs for guidance into breast and prostate cancer cells in vitro and in vivo. In addition, the practical results obtained are specifically discussed for use as a starting point for scientists looking to begin research in this field.

4.
Polymers (Basel) ; 13(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34451303

RESUMO

In the present study, the modification of branched polyethyleneimine (b-PEI) was carried out using mesquite gum (MG) to improve its hemocompatibility to be used in biomedical applications. In the copolymer synthesis process (carboxymethylated mesquite gum grafted polyethyleneimine copolymer (CBX-MG-PEI), an MG carboxymethylation reaction was initially carried out (carboxymethylated mesquite gum (CBX-MG). Subsequently, the functionalization between CBX-MG and b-PEI was carried out using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) as crosslinking agents. The synthesis products were characterized using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). Thermogravimetric analysis showed that CBX-MG and CBX-MG-PEI presented a lower decomposition temperature than MG. The CBX-MG-PEI has a high buffer capacity in the pH range of 4 to 7, similar to the b-PEI. In addition, the CBX-MG-PEI showed an improvement in hemocompatibility in comparison with the b-PEI. The results showed a non-hemolytic property at doses lower than 0.1 µg/mL (CBX-MG-PEI). These results allow us to propose that this copolymer be used in transfection, polymeric nanoparticles, and biomaterials due to its physicochemical and hemocompatibility properties.

5.
Polymers (Basel) ; 13(3)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513783

RESUMO

Microspheres have been proposed for different medical applications, such as the delivery of therapeutic proteins. The first step, before evaluating the functionality of a protein delivery system, is to evaluate their biological safety. In this work, we developed chitosan/Tween 80 microspheres loaded with magnetite nanoparticles and evaluated cell damage. The formation and physical-chemical properties of the microspheres were determined by FT-IR, Raman, thermogravimetric analysis (TGA), energy-dispersive X-ray spectroscopy (EDS), dynamic light scattering (DLS), and SEM. Cell damage was evaluated by a full set of in vitro assays using a non-cancerous cell line, human erythrocytes, and human lymphocytes. At the same time, to know if these microspheres can load proteins over their surface, bovine serum albumin (BSA) immobilization was measured. Results showed 7 nm magnetite nanoparticles loaded into chitosan/Tween 80 microspheres with average sizes of 1.431 µm. At concentrations from 1 to 100 µg/mL, there was no evidence of changes in mitochondrial metabolism, cell morphology, membrane rupture, cell cycle, nor sister chromatid exchange formation. For each microgram of microspheres 1.8 µg of BSA was immobilized. The result provides the fundamental understanding of the in vitro biological behavior, and safety, of developed microspheres. Additionally, this set of assays can be helpful for researchers to evaluate different nano and microparticles.

6.
Oncol Lett ; 20(5): 261, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32989395

RESUMO

The presence of the genetic variants of the steroid 5-alpha reductase 2 enzyme, which is encoded by the SRD5A2 gene, has been associated with an increased risk of developing prostate cancer among certain ethnic groups. However, these molecular studies have not been conducted on the Mexican population. The analysis of the genetic variants, rs9282858 and rs523349, was performed in 101 males with prostate cancer and 100 healthy controls classified as males without prostate abnormalities (n=60) and males with benign prostatic hyperplasia (n=40), to identify a probable association with this cancer type in the Northeast Mexican population. An association was identified between prostate cancer and biomass exposure [P=0.012; odds ratio (OR), 2.89; confidence interval (CI)=1.21-6.88] and tobacco use (P=0.028; OR=1.88; CI=1.07-3.31), while no association was observed between cancer development and the rs9282858 variant, or between a protective effect and the rs523349 variant. Notably, an association was identified between rs523349 and biomass exposure (P=0.013, OR=3.17; CI=1.23-8.17 for the G risk allele, and OR=0.32, CI=0.12-0.81 for the C protective allele) using the dominant genetic model. To the best of our knowledge, the present study was the first of its type to investigate the Mexican population with prostate cancer.

7.
Biomed Rep ; 13(4): 24, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32765863

RESUMO

Hypokalemic periodic paralysis type 1 (OMIM; HOKPP1) and type 2 (OMIM; HOKPP2) are diseases of the muscle characterized by episodes of painless muscle weakness, and is associated with low potassium blood levels. Hyperthyroidism has been associated with thyrotoxic periodic paralysis (TTPP) (OMIM; TTPP1 and TTPP2), and genetic susceptibility has been implicated. In the present study, the clinical and epidemiological characteristics of patients with TTPP are described, together with their association with genetic variants reported previously in other populations. A prospective and a retrospective search of the medical records of patients who attended the emergency department at the Hospital Universitario 'Dr. Jose E. Gonzalez' in Monterrey, Nuevo León, Mexico, and were diagnosed with TTPP was performed. A total of 16 gene variants in the genes MUC1, CACNA1S, KCNE3 and SCN4A, and nine ancestry informative markers (AIMs), were analysed by Multiplex TaqMan™ Open Array assay, and a genetic association study was performed. A total of 11 patients were recruited, comprising nine males and two females (age range, 19-52 years) and 64 control subjects. Only two cases (18%) had a previous diagnosis of hyperthyroidism; the rest were diagnosed subsequently with Graves' disease. Based on the analysis, two DNA variants were found to potentially confer an increased risk for TTPP: S1PR1 rs3737576 [odds ratio (OR), 4.38; 95% confidence interval (CI), 1.08-17.76] and AIM rs2330442 (OR, 4.50; 95% CI, 1.21-16.69), and one variant was suggested to be possibly associated with TTPP, namely MUC1 rs4072037 (OR, 3.08; 95% CI, 0.841-1.38). However, there were no statistically significant associations between any of the 24 DNA variants and TTPP in a population from northeast Mexico.

8.
Sci Rep ; 10(1): 11478, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32651404

RESUMO

The enzyme nicotidamide-N-methyltransferase (NNMT) regulates adipose tissue energy expenditure through increasing nicotinamide adenosine dinucleotide (NAD+) content. NNMT methylates nicotinamide to N1-methylnicotidamide (MNA-1) using S-adenosyl methionine. The rs694539 NNMT polymorphism is associated with non-alcoholic steatohepatitis, and rs1941404 is associated with hyperlipidemia. The rs1421085 FTO is related to poor eating behaviors, and rs3751723 IRX3 is associated with obesity. To investigate the association of rs694539 and rs1941404 NNMT, rs140285 FTO and rs3751723 IRX3 polymorphisms with MNA-1 concentrations, resting energy expenditure (REE) and BMI, we included clinically healthy Mexican subjects 30 to 50 years old, 100 subjects (35 men/65 women) with BMI > 30 kg/m2 and 100 subjects (32 men/68 women) with BMI < 25 kg/m2. Glucose, lipid profile, insulin, leptin, acylated ghrelin, and MNA-1 (LC-MS) were quantified. Resting energy expenditure (REE) was estimated using indirect calorimetry with a Fitmate instrument. Genotyping was performed using PCR-RFLP, and allelic discrimination was examined using TaqMan probes. MNA-1 concentrations and REE were significantly higher in obese subjects. Subjects with the rs694539AA NNMT genotype (recessive model) had lower weight, BMI, and REE. BMI showed an association with HDL-C, triglycerides, MNA-1, acetylated ghrelin, leptin, insulin concentrations, HOMA-IR, REE, and rs1421085. Subjects with the TC or CC genotypes of rs1421085 FTO showed 6 kg and 2 units of BMI more than did those with the TT wild type. The CG of the rs1421085 and rs3751723 haplotypes was associated with BMI. These findings showed that BMI was strongly associated with REE, rs1421085 FTO and the CG rs1421085 FTO and rs3751723 IRX3 haplotypes. We used the GMDR approach in obesity phenotype to show the interaction of four SNPs and metabolic variables.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Metabolismo Energético/genética , Proteínas de Homeodomínio/genética , Nicotinamida N-Metiltransferase/genética , Fatores de Transcrição/genética , Adulto , Alelos , Índice de Massa Corporal , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Haplótipos/genética , Humanos , Leptina/genética , Masculino , Pessoa de Meia-Idade , Obesidade/genética , Obesidade/patologia , Polimorfismo de Nucleotídeo Único/genética
9.
Int J Mol Sci ; 20(9)2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31075877

RESUMO

We investigated whether likely pathogenic variants co-segregating with gastroschisis through a family-based approach using bioinformatic analyses were implicated in body wall closure. Gene Ontology (GO)/Panther functional enrichment and protein-protein interaction analysis by String identified several biological networks of highly connected genes in UGT1A3, UGT1A4, UGT1A5, UGT1A6, UGT1A7, UGT1A8, UGT1A9, UGT1A10, AOX1, NOTCH1, HIST1H2BB, RPS3, THBS1, ADCY9, and FGFR4. SVS-PhoRank identified a dominant model in OR10G4 (also as heterozygous de novo), ITIH3, PLEKHG4B, SLC9A3, ITGA2, AOX1, and ALPP, including a recessive model in UGT1A7, UGT1A6, PER2, PTPRD, and UGT1A3. A heterozygous compound model was observed in CDYL, KDM5A, RASGRP1, MYBPC2, PDE4DIP, F5, OBSCN, and UGT1A. These genes were implicated in pathogenetic pathways involving the following GO related categories: xenobiotic, regulation of metabolic process, regulation of cell adhesion, regulation of gene expression, inflammatory response, regulation of vascular development, keratinization, left-right symmetry, epigenetic, ubiquitination, and regulation of protein synthesis. Multiple background modifiers interacting with disease-relevant pathways may regulate gastroschisis susceptibility. Based in our findings and considering the plausibility of the biological pattern of mechanisms and gene network modeling, we suggest that the gastroschisis developmental process may be the consequence of several well-orchestrated biological and molecular mechanisms which could be interacting with gastroschisis predispositions within the first ten weeks of development.


Assuntos
Parede Abdominal/patologia , Biologia Computacional/métodos , Gastrosquise/genética , Variação Genética , Ontologia Genética , Humanos , Padrões de Herança/genética , Mapas de Interação de Proteínas/genética , Recidiva
10.
Exp Ther Med ; 16(1): 3-11, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29896223

RESUMO

Biotransformation is an enzyme-catalyzed process in which the body converts endogenous compounds, xenobiotics and toxic substances into harmless or easily excreted metabolites. The biotransformation reactions are classified as phase I and II reactions. Uridine 5'-diphospho (UDP)-glucuronosyltransferases (UGTs) are a superfamily of phase II enzymes which have roles in the conjugation of xenobiotics or endogenous compounds, including drugs and bilirubin, with glucuronic acid to make them easier to excrete. The method the human body uses to achieve glucuronidation may be affected by a large interindividual variation due to changes in the sequences of the genes encoding these enzymes. In the last five years, the study of the genetic variants of the UGTs at a molecular level has become important due to its association with several diseases and the ability to predict adverse events due to drug metabolism. In the present review, the structure and the prominent genetic variants of the UGT1A subfamily and their metabolic and clinical implications are described.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA