Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(16)2023 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-37631142

RESUMO

Trees in cacao Agroforestry systems (AFS) may present a high potential for cadmium (Cd) phytoextraction, helping to reduce Cd in cacao (Theobroma cacao L.) plants grown in contaminated soils. To assess this potential, four forest fine-woody species commonly found in cacao high-productive sites in Colombia (Tabebuia rosea, Terminalia superba, Albizia guachapele, and Cariniana pyriformis) were exposed to contrasting CdCl2 contamination levels (0, 6, and 12 ppm) on a hydroponic medium. Growth dynamics, tolerance index (TI), and Cd concentration and allocation in leaves, stems, and roots were evaluated for up to 90 days after initial exposure. T. superba, A. guachapele, and C. pyriformis were classified as moderately tolerant (TI > 0.6), and T. rosea was considered a sensitive species (TI < 0.35) under 12 ppm Cd contamination. Despite showing a high stem Cd concentration, C. pyriformis also showed the lowest relative growth rate. Among the evaluated forest species, A. guachapele exhibited the highest Cd accumulation capacity per plant (2.02 mg plant-1) but also exhibited a higher Cd allocation to leaves (4%) and a strong decrease in leaf and stem dry mass after 90 days of exposure (~75% and 50% respectively, compared to control treatments). Taking together all the favorable features exhibited by T. superba as compared to other CAFS tree species and recognized phytoextractor tree species in the literature, such as Cd hyperaccumulation, high tolerance index, low Cd concentration in leaves, and high Cd allocation to the stem (harvestable as wood), this species is considered to have a high potential for cadmium phytoextraction in cocoa agroforestry systems.

2.
Plants (Basel) ; 12(16)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37631153

RESUMO

The accumulation of high cadmium (Cd) levels in cacao beans (Theobroma cacao) generate several commercial and health issues. We hypothesized that cacao phenotypic and genotypic diversity could provide new insights to decrease Cd accumulation in cacao beans. Nine cacao rootstock genotypes were evaluated for up to 90 days under 0, 6, and 12 (mg·kg-1) of CdCl2 exposure and Cd content and plant growth dynamics were measured in leaves, stems, and roots. Data revealed that all cacao genotypes studied here were highly tolerant to Cd, since they presented tolerance index ≥ 60%. In shoots, EET61 and PA46 presented the higher (~270 mg·kg DW-1) and lower (~20 mg·kg DW-1) Cd concentration, respectively. Accordingly, only the EET61 showed an increase in the shoot cadmium translocation factor over the 90 days of exposure. However, when analyzing cadmium allocation to different organs based on total plant dry mass production, none of the genotypes maintained high Cd compartmentalization into roots, since P46, which was the genotype with the highest allocation of Cd to the roots, presented only 20% of total cadmium per plant in this plant organ and 80% allocated into the shoots, under Cd 12 (mg·kg-1) and after 90 days of exposure. Thus, genotypic/phenotypic variability in cacao rootstocks may provide valuable strategies for maximizing the reduction in Cd content in shoots. In this sense, IMC67 and PA46 were the ones that stood out in the present study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA