Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Cell Physiol ; 238(10): 2304-2315, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37555566

RESUMO

Gastrointestinal epithelial cells respond to milk-born molecules throughout breastfeeding, influencing growth, and development. The rapid renewal of the small intestine depends on the proliferation in the crypt that drives cell fates. We used early weaning model to investigate immediate and late effects of breastfeeding on proliferation, differentiation of jejunal epithelial cells. Wistar rats were either allowed to suckle (S) until 21 postnatal days or submitted to early weaning (EW) at 15 days. By comparing ages (18, 60, and 120 days), we found that EW decreased Ki67 indices and villi height at 18 and 60 days (p < 0.05), and at 120 days they were similar between diets. Proliferative reduction and augmented expression of Cdkn1b (p27 gene) were parallel. In the stem cell niche, EW increased the number and activity (Defa24) of Paneth cells at 18 and 60 days (p < 0.05), and Lgr5 and Ascl2 genes showed inverted responses between ages. Among target cells, EW decreased goblet cell number at 18 and 60 days (p < 0.05) and increased it at 120 days (p < 0.05), whereas enteroendocrine marker genes were differentially altered. EW reduced enterocytes density at 18 days (p < 0.05), and at 120 days this population was decreased (vs. 60 days). Among cell fate crypt-controlling genes, Notch and Atoh1 were the main targets of EW. Metabolically, intraperitoneal glucose tolerance was immediately reduced (18 days), being reverted until 120 days (p < 0.05). Currently, we showed that breastfeeding has a lifespan influence on intestinal mucosa and on its stem cell compartment. We suggest that, although jejunum absorptive function is granted after early weaning, the long lasting changes in gene expression might prime the mucosa with a different sensitivity to gut disorders that still have to be further explored.

2.
Cell Biol Int ; 46(5): 701-710, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35032139

RESUMO

The small intestine mucosa is lined by specialized cells that form the crypt-villus axis, which expands its surface. Among the six intestinal epithelial cell types, the Paneth cell is located at the base of the crypt, and it contains numerous granules in its cytoplasm, composed of antimicrobial peptides, such as defensins and lysozyme, and growth factors, such as epidermal growth factor, transforming growth factor-α, and Wnt ligands. Together, these elements act in the defense against microorganisms, regulation of intestinal microbiota, maintenance, and regulation of stem cell identity. Pathologies that target Paneth cells can disturb such defense activity, but they also affect the maintenance of the stem cell niche. In that way, Crohn's disease, necrotizing enterocolitis, and graft-versus-host disease promote a reduction of Paneth cell population, and, consequently, secretion of their products into the lumen of the crypts, making the affected organism predisposed to infections and dysbiosis. Additionally, the emergence of new intestinal cells is also decreased. This review aims to address the main characteristics of Paneth cells, highlighting their multiple functions and the importance of their preservation to ensure bowel homeostasis.


Assuntos
Mucosa Intestinal , Celulas de Paneth , Contagem de Células , Intestinos , Celulas de Paneth/metabolismo , Nicho de Células-Tronco
3.
Front Physiol ; 12: 721242, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34588994

RESUMO

The gastric mucosa is disturbed when breastfeeding is interrupted, and such early weaning (EW) condition permanently affects the differentiation of zymogenic cells. The aim of the study was to evaluate the immediate and long-term effects of EW on gastric cell proliferation, considering the molecular markers for cell cycle, inflammation, and metaplasia. Overall, we investigated the lifelong adaptation of gastric growth. Wistar rats were divided into suckling-control (S) and EW groups, and gastric samples were collected at 18, 30, and 60 days for morphology, RNA, and protein isolation. Inflammation and metaplasia were not identified, but we observed that EW promptly increased Ki-67-proliferative index (PI) and mucosa thickness (18 days). From 18 to 30 days, PI increased in S rats, whereas it was stable in EW animals, and such developmental change in S made its PI higher than in EW. At 60 days, the PI decreased in S, making the indices similar between groups. Spatially, during development, proliferative cells spread along the gland, whereas, in adults, they concentrate at the isthmus-neck area. EW pushed dividing cells to this compartment (18 days), increased PI at the gland base (60 days), but it did not interfere in expression of cell cycle molecules. At 18 days, EW reduced Tgfß2, Tgfß3, and Tgfbr2 and TßRII and p27 levels, which might regulate the proliferative increase at this age. We demonstrated that gastric cell proliferation is immediately upregulated by EW, corroborating previous results, but for the first time, we showed that such increased PI is stable during growth and aging. We suggest that suckling and early weaning might use TGFßs and p27 to trigger different proliferative profiles during life course.

4.
Physiol Rep ; 9(3): e14744, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33580917

RESUMO

During postnatal development, colostrum and breastmilk are sequentially the first sources of nutrition with protein components and bioactive molecules that confer protection and immunostimulatory function to the gut. Caseins, whey proteins, secretory immunoglobulin A (sIgA), mucins, tryptophan, and growth factors are among milk-borne elements that are directly important in the control of mucosa development and protection. Consequently, breastfeeding is associated with the low incidence of gastrointestinal inflammation and with the decrease in respiratory diseases during postnatal period. The novel coronavirus (SARS-CoV-2) binds to angiotensin II-converting enzyme (ACE2) on the cell membrane, allowing virus entrance, replication, and host commitment. ACE2 is expressed by different cell types, which include ciliated cells in the lungs and enterocytes in the intestine. Such cells are highly active in metabolism, as they internalize molecules to be processed and used by the organism. The disruption of ACE2 impairs leads to intestinal inflammation and decreased synthesis of serotonin, affecting motility. By reviewing the effects of SARS-CoV-2 in the gastrointestinal and respiratory tracts in infants, and gut responses to breastfeeding interruption, we suggest that it is important to maintain breastfeeding during SARS-CoV-2 infection, as it might be essential to protect newborns from gastrointestinal-associated disorders and relieve disease symptoms.


Assuntos
Aleitamento Materno/tendências , COVID-19/metabolismo , COVID-19/prevenção & controle , COVID-19/transmissão , Feminino , Humanos
5.
J Cachexia Sarcopenia Muscle ; 10(5): 1116-1127, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31307125

RESUMO

BACKGROUND: Cachexia is a multifactorial and multiorgan syndrome associated with cancer and other chronic diseases and characterized by severe involuntary body weight loss, disrupted metabolism, inflammation, anorexia, fatigue, and diminished quality of life. This syndrome affects around 50% of patients with colon cancer and is directly responsible for the death of at least 20% of all cancer patients. Systemic inflammation has been recently proposed to underline most of cachexia-related symptoms. Nevertheless, the exact mechanisms leading to the initiation of systemic inflammation have not yet been unveiled, as patients bearing the same tumour and disease stage may or may not present cachexia. We hypothesize a role for gut barrier disruption, which may elicit persistent immune activation in the host. To address this hypothesis, we analysed the healthy colon tissue, adjacent to the tumour. METHODS: Blood and rectosigmoid colon samples (20 cm distal to tumour margin) obtained during surgery, from cachectic (CC = 25) or weight stable (WSC = 20) colon cancer patients, who signed the informed consent form, were submitted to morphological (light microscopy), immunological (immunohistochemistry and flow cytometry), and molecular (quantification of inflammatory factors by Luminex® xMAP) analyses. RESULTS: There was no statistical difference in gender and age between groups. The content of plasma interleukin 6 (IL-6) and IL-8 was augmented in cachectic patients relative to those with stable weight (P = 0.047 and P = 0.009, respectively). The number of lymphocytic aggregates/field in the gut mucosa was higher in CC than in WSC (P = 0.019), in addition to those of the lamina propria (LP) eosinophils (P < 0.001) and fibroblasts (P < 0.001). The area occupied by goblet cells in the colon mucosa was decreased in CC (P = 0.016). The M1M2 macrophages percentage was increased in the colon of CC, in relation to WSC (P = 0.042). Protein expression of IL-7, IL-13, and transforming growth factor beta 3 in the colon was significantly increased in CC, compared with WSC (P = 0.02, P = 0.048, and P = 0.048, respectively), and a trend towards a higher content of granulocyte-colony stimulating factor in CC was also observed (P = 0.061). The results suggest an increased recruitment of immune cells to the colonic mucosa in CC, as compared with WSC, in a fashion that resembles repair response following injury, with higher tissue content of IL-13 and transforming growth factor beta 3. CONCLUSIONS: The changes in the intestinal mucosa cellularity, along with modified cytokine expression in cachexia, indicate that gut barrier alterations are associated with the syndrome.


Assuntos
Caquexia/etiologia , Caquexia/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Neoplasias/complicações , Idoso , Biomarcadores , Caquexia/metabolismo , Citocinas/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Inflamação , Mediadores da Inflamação , Masculino , Pessoa de Meia-Idade , Neoplasias/metabolismo , Proteoma , Proteômica
6.
Int J Mol Sci ; 21(1)2019 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-31892140

RESUMO

Background: Gastric glands grow and cells reach differentiation at weaning in rats. By considering that early weaning (EW) can affect the timing of development, we aimed to compare molecular and cellular markers of differentiation in pups and adults. Methods: Wistar rats were separated into suckling-control (S) and EW groups at 15 days. Stomachs were collected at 15, 18, and 60 days for RNA and protein extraction, and morphology. Results: After EW, the expression of genes involved in differentiation (Atp4b, Bhlha15 and Pgc) augmented (18 days), and Atp4b and Gif were high at 60 days. EW increased the number of zymogenic cells (ZC) in pups and adults and augmented mucous neck cells only at 18 days, whereas parietal and transition cells (TC) were unchanged. Conclusions: EW affected the gastric mucosa mostly in a transient manner as the changes in gene expression and distribution of differentiated cells that were detected in pups were not fully maintained in adults, except for the size of ZC population. We concluded that though most of EW effects were immediate, such nutritional change in the infancy might affect part of gastric digestive functions in a permanent manner, as some markers were kept unbalanced in the adulthood.


Assuntos
Diferenciação Celular/fisiologia , Células Epiteliais/fisiologia , Mucosa Gástrica/fisiologia , Estômago/fisiologia , Animais , Feminino , Expressão Gênica/fisiologia , Masculino , Ratos , Ratos Wistar , Desmame
7.
Sci Rep ; 8(1): 9823, 2018 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-29959361

RESUMO

Neonatal- Maternal Separation (NMS) deprives mammals from breastfeeding and maternal care, influencing growth during suckling- weaning transition. In the gastric mucosa, Mist1 (encoded by Bhlha15 gene) and moesin organize the secretory apparatus for pepsinogen C in zymogenic cells. Our current hypothesis was that NMS would change corticosterone activity through receptors (GR), which would modify molecules involved in zymogenic cell differentiation in rats. We found that NMS increased corticosterone levels from 18 days onwards, as GR decreased in the gastric mucosa. However, as nuclear GR was detected, we investigated receptor binding to responsive elements (GRE) and observed an augment in NMS groups. Next, we demonstrated that NMS increased zymogenic population (18 and and 30 days), and targeted Mist1 and moesin. Finally, we searched for evolutionarily conserved sequences that contained GRE in genes involved in pepsinogen C secretion, and found that the genomic regions of Bhlha15 and PgC contained sites highly likely to be responsive to glucocorticoids. We suggest that NMS triggers GR- GRE to enhance the expression and to prime genes that organize cellular architecture in zymogenic population for PgC function. As pepsinogen C- pepsin is essential for digestion, disturbance of parenting through NMS might alter functions of gastric mucosa in a permanent manner.


Assuntos
Celulas Principais Gástricas/metabolismo , Corticosterona/metabolismo , Mucosa Gástrica/metabolismo , Privação Materna , Pepsinogênio C/metabolismo , Receptores de Glucocorticoides/metabolismo , Desmame , Animais , Animais Recém-Nascidos , Diferenciação Celular , Células Cultivadas , Celulas Principais Gástricas/citologia , Feminino , Ratos
8.
Life Sci ; 202: 35-43, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29626530

RESUMO

AIMS: High fat diet consumes and thyroid hormones (THs) disorders may affect nutrients metabolism, but their impact on the absorptive epithelium, the first place of nutrients access, remains unknown. Our aim was to evaluate the intestinal morphology and nutrients transporters content in mice fed standard (LFD) or high fat (HFD) diets in hypo or hyperthyroidism-induced condition. MATERIAL AND METHODS: C57BL/6 male mice fed LFD or HFD diets for 12 weeks, followed by saline, PTU (antithyroid drug) or T3 treatment up to 30 days. The mice were euthanized and proximal intestine was removed to study GLUT2, GLUT5, PEPT1, FAT-CD36, FATP4, NPC1L1 and NHE3 distribution by Western blotting. Since PPAR-a is activated by fatty acids, which is abundant in the HFD, we also evaluated whether PPAR-a affects nutrients transporters. Thus, mice were treated with fenofibrate, a PPAR-a agonist. KEY FINDINGS: HFD decreased GLUT2, PEPT1, FAT-CD6 and NPC1L1, but increased NHE3, while GLUT5 and FATP4 remained unaltered. THs did not alter distribution of nutrients transporters neither in LFD nor in HFD groups, but they increased villi length and depth crypt in LFD and HFD, respectively. Fenofibrate did not affect content of nutrients transporters, excluding PPAR-a involvement on the HFD-induced changes. SIGNIFICANCE: We assume that chronic HFD consumption reduced most of the nutrients transporters content in the small intestine of mice, which might limit the entrance of nutrients and gain weight. Since NHE3 promotes sodium absorption, and it was increased in HFD group, this finding could contribute to explain the hypertension observed in obesity.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Hipertireoidismo/metabolismo , Hipotireoidismo/metabolismo , Mucosa Intestinal/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , PPAR alfa/metabolismo , Animais , Antitireóideos/farmacologia , Fenofibrato/farmacologia , Teste de Tolerância a Glucose , Hipertireoidismo/induzido quimicamente , Hipolipemiantes/farmacologia , Hipotireoidismo/induzido quimicamente , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/metabolismo , Intestinos/efeitos dos fármacos , Intestinos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , PPAR alfa/antagonistas & inibidores , Propiltiouracila/farmacologia , Trocador 3 de Sódio-Hidrogênio/metabolismo , Hormônios Tireóideos/metabolismo , Tri-Iodotironina/farmacologia
9.
Sci Rep ; 7: 45867, 2017 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-28361902

RESUMO

Gastric epithelial cells differentiate throughout the third postnatal week in rats, and become completely functional by weaning time. When suckling is interrupted by early weaning (EW), cell proliferation and differentiation change in the gastric mucosa, and regulatory mechanisms might involve corticosterone activity. Here we used EW and RU486 (glucocorticoid receptor antagonist) to investigate the roles of corticosterone on differentiation of mucous neck (MNC) and zymogenic cells (ZC) in rats, and to evaluate whether effects persisted in young adults. MNC give rise to ZC, and mucin 6, Mist1, pepsinogen a5 and pepsinogen C are produced to characterize these cells. We found that in pups, EW augmented the expression of mucins, Mist1 and pepsinogen C at mRNA and protein levels, and it changed the number of MNC and ZC. Corticosterone regulated pepsinogen C expression, and MNC and ZC distributions. Further, the changes on MNC population and pepsinogen C were maintained until early- adult life. Therefore, by using EW as a model for altered corticosterone activity in rats, we demonstrated that the differentiation of secretory epithelial cells is sensitive to the type of nutrient in the lumen. Moreover, this environmental perception activates corticosterone to change maturation and reprogram cellular functions in adulthood.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Corticosterona/metabolismo , Mucosa Gástrica/metabolismo , Desmame , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Proliferação de Células/genética , Células Epiteliais/metabolismo , Ratos , Estômago/crescimento & desenvolvimento
10.
Nutrition ; 32(1): 101-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26520918

RESUMO

OBJECTIVES: Based on previous evidence showing that early weaning disturbs the ontogenesis of rat gastric glands, which are the major site of ghrelin synthesis, we investigated the distribution of ghrelin and its receptor (GHS-R) in the rat gastric epithelium during postnatal development and evaluated the effects of early weaning on their levels. Additionally, we studied the contribution of ghrelin to gastric growth during the abrupt nutrient transition. METHODS: Wistar rats were submitted to early weaning at 15 d and suckling counterparts were taken as controls. RESULTS: By running quantitative reverse transcription polymerase chain reaction, immunoblots, and immunohistochemistry, we detected a variation of ghrelin levels and an increase of expression and number of immunolabeled cells, 3 d after treatment (P < 0.05). Through confocal microscopy, we identified GHS-R in the neck region of the gland and did not observe changes in protein levels. Growth was evaluated after ghrelin antagonist ([D-Lys-3]-GHRP-6) administration, which reduced DNA synthesis index in early-weaned rats (P < 0.05) as determined by bromodeoxyuridine incorporation. CONCLUSION: The present study demonstrated that ghrelin and GHS-R are distributed in gastric mucosa during the postnatal development, indicating that they can signal and function in epithelial cells. We concluded that early weaning increased ghrelin levels in the stomach, and it takes part of cell proliferation control that is essential for stomach growth. Therefore, among the many effects previously described for early weaning, this abrupt nutrient transition also changed ghrelin levels, which might represent an additional element in the complex mechanism that coordinates stomach development.


Assuntos
Mucosa Gástrica/metabolismo , Grelina/metabolismo , Receptores de Grelina/metabolismo , Desmame , Animais , Proliferação de Células , Células Epiteliais/metabolismo , Mucosa Gástrica/crescimento & desenvolvimento , Ratos Wistar , Transdução de Sinais , Estômago/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA