Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Bioenerg ; 1865(3): 149046, 2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-38642871

RESUMO

The respiratory chain alternative enzymes (AEs) NDX and AOX from the tunicate Ciona intestinalis (Ascidiacea) have been xenotopically expressed and characterized in human cells in culture and in the model organisms Drosophila melanogaster and mouse, with the purpose of developing bypass therapies to combat mitochondrial diseases in human patients with defective complexes I and III/IV, respectively. The fact that the genes coding for NDX and AOX have been lost from genomes of evolutionarily successful animal groups, such as vertebrates and insects, led us to investigate if the composition of the respiratory chain of Ciona and other tunicates differs significantly from that of humans and Drosophila, to accommodate the natural presence of AEs. We have failed to identify in tunicate genomes fifteen orthologous genes that code for subunits of the respiratory chain complexes; all of these putatively missing subunits are peripheral to complexes I, III and IV in mammals, and many are important for complex-complex interaction in supercomplexes (SCs), such as NDUFA11, UQCR11 and COX7A. Modeling of all respiratory chain subunit polypeptides of Ciona indicates significant structural divergence that is consistent with the lack of these fifteen clear orthologous subunits. We also provide evidence using Ciona AOX expressed in Drosophila that this AE cannot access the coenzyme Q pool reduced by complex I, but it is readily available to oxidize coenzyme Q molecules reduced by glycerophosphate oxidase, a mitochondrial inner membrane-bound dehydrogenase that is not involved in SCs. Altogether, our results suggest that Ciona AEs might have evolved in a mitochondrial inner membrane environment much different from that of mammals and insects, possibly without SCs; this correlates with the preferential functional interaction between these AEs and non-SC dehydrogenases in heterologous mammalian and insect systems. We discuss the implications of these findings for the applicability of Ciona AEs in human bypass therapies and for our understanding of the evolution of animal respiratory chain.


Assuntos
Ciona intestinalis , Proteínas Mitocondriais , Fosforilação Oxidativa , Animais , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Ciona intestinalis/genética , Ciona intestinalis/enzimologia , Humanos , Oxirredutases/genética , Oxirredutases/metabolismo , Subunidades Proteicas/metabolismo , Subunidades Proteicas/genética , Drosophila melanogaster/genética , Drosophila melanogaster/enzimologia , Urocordados/genética , Urocordados/enzimologia , Transporte de Elétrons , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/genética , Filogenia , Proteínas de Plantas
2.
Cell Biol Int ; 42(6): 664-669, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29384231

RESUMO

The mitochondrial respiratory chain in vertebrates and arthropods is different from that of most other eukaryotes because they lack alternative enzymes that provide electron transfer pathways additional to the oxidative phosphorylation (OXPHOS) system. However, the use of diverse experimental models, such as human cells in culture, Drosophila melanogaster and the mouse, has demonstrated that the transgenic expression of these alternative enzymes can impact positively many phenotypes associated with human mitochondrial and other cellular dysfunction, including those typically presented in complex IV deficiencies, Parkinson's, and Alzheimer's. In addition, these enzymes have recently provided extremely valuable data on how, when, and where reactive oxygen species, considered by many as "by-products" of OXPHOS, can contribute to animal longevity. It has also been shown that the expression of the alternative enzymes is thermogenic in cultured cells, causes reproductive defects in flies, and enhances the deleterious phenotype of some mitochondrial disease models. Therefore, all the reported beneficial effects must be considered with caution, as these enzymes have been proposed to be deployed in putative gene therapies to treat human diseases. Here, we present a brief review of the scientific data accumulated over the past decade that show the benefits and the risks of introducing alternative branches of the electron transport into mammalian and insect mitochondria, and we provide a perspective on the future of this research field.


Assuntos
Animais Geneticamente Modificados/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Translocador 1 do Nucleotídeo Adenina/genética , Translocador 1 do Nucleotídeo Adenina/metabolismo , Animais , Animais Geneticamente Modificados/crescimento & desenvolvimento , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Humanos , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , Fosforilação Oxidativa , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA