Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant J ; 118(6): 2094-2107, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38523577

RESUMO

The sugarcane (Saccharum spp.) genome is one of the most complex of all. Modern varieties are highly polyploid and aneuploid as a result of hybridization between Saccharum officinarum and S. spontaneum. Little research has been done on meiotic control in polyploid species, with the exception of the wheat Ph1 locus harboring the ZIP4 gene (TaZIP4-B2) which promotes pairing between homologous chromosomes while suppressing crossover between homeologs. In sugarcane, despite its interspecific origin, bivalent association is favored, and multivalents, if any, are resolved at the end of prophase I. Thus, our aim herein was to investigate the purported genetic control of meiosis in the parental species and in sugarcane itself. We investigated the ZIP4 gene and immunolocalized meiotic proteins, namely synaptonemal complex proteins Zyp1 and Asy1. The sugarcane ZIP4 gene is located on chromosome 2 and expressed more abundantly in flowers, a similar profile to that found for TaZIP4-B2. ZIP4 expression is higher in S. spontaneum a neoautopolyploid, with lower expression in S. officinarum, a stable octoploid species. The sugarcane Zip4 protein contains a TPR domain, essential for scaffolding. Its 3D structure was also predicted, and it was found to be very similar to that of TaZIP4-B2, reflecting their functional relatedness. Immunolocalization of the Asy1 and Zyp1 proteins revealed that S. officinarum completes synapsis. However, in S. spontaneum and SP80-3280 (a modern variety), no nuclei with complete synapsis were observed. Importantly, our results have implications for sugarcane cytogenetics, genetic mapping, and genomics.


Assuntos
Meiose , Proteínas de Plantas , Saccharum , Saccharum/genética , Saccharum/metabolismo , Meiose/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cromossomos de Plantas/genética , Poliploidia , Regulação da Expressão Gênica de Plantas , Complexo Sinaptonêmico/genética , Complexo Sinaptonêmico/metabolismo
2.
Mol Genet Genomics ; 287(1): 21-38, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22120641

RESUMO

Cultivated peanut is an allotetraploid with an AB-genome. In order to learn more of the genomic structure of peanut, we characterized and studied the evolution of a retrotransposon originally isolated from a resistance gene analog (RGA)-containing bacterial artificial chromosome (BAC) clone. It is a moderate copy number Ty1-copia retrotransposon from the Bianca lineage and we named it Matita. Fluorescent in situ hybridization (FISH) experiments showed that Matita is mainly located on the distal regions of chromosome arms and is of approximately equal frequency on both A- and B-chromosomes. Its chromosome-specific hybridization pattern facilitates the identification of individual chromosomes, a useful cytogenetic tool considering that chromosomes in peanut are mostly metacentric and of similar size. Phylogenetic analysis of Matita elements, molecular dating of transposition events, and an estimation of the evolutionary divergence of the most probable A- and B-donor species suggest that Matita underwent its last major burst of transposition activity at around the same time of the A- and B-genome divergence about 3.5 million years ago. By probing BAC libraries with overgos probes for Matita, resistance gene analogues, and single- or low-copy genes, it was demonstrated that Matita is not randomly distributed in the genome but exhibits a significant tendency of being more abundant near resistance gene homologues than near single-copy genes. The described work is a further step towards broadening the knowledge on genomic and chromosomal structure of peanut and on its evolution.


Assuntos
Arachis/genética , Evolução Molecular , Genoma de Planta/genética , Filogenia , Poliploidia , Retroelementos/genética , Sequência de Bases , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos/genética , Análise por Conglomerados , Biologia Computacional , Variações do Número de Cópias de DNA/genética , Primers do DNA/genética , Hibridização in Situ Fluorescente , Modelos Genéticos , Anotação de Sequência Molecular , Dados de Sequência Molecular , Análise de Sequência de DNA , Especificidade da Espécie
3.
BMC Plant Biol ; 8: 14, 2008 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-18230166

RESUMO

BACKGROUND: Cultivated peanut, Arachis hypogaea is an allotetraploid of recent origin, with an AABB genome. In common with many other polyploids, it seems that a severe genetic bottle-neck was imposed at the species origin, via hybridisation of two wild species and spontaneous chromosome duplication. Therefore, the study of the genome of peanut is hampered both by the crop's low genetic diversity and its polyploidy. In contrast to cultivated peanut, most wild Arachis species are diploid with high genetic diversity. The study of diploid Arachis genomes is therefore attractive, both to simplify the construction of genetic and physical maps, and for the isolation and characterization of wild alleles. The most probable wild ancestors of cultivated peanut are A. duranensis and A. ipaënsis with genome types AA and BB respectively. RESULTS: We constructed and characterized two large-insert libraries in Bacterial Artificial Chromosome (BAC) vector, one for each of the diploid ancestral species. The libraries (AA and BB) are respectively c. 7.4 and c. 5.3 genome equivalents with low organelle contamination and average insert sizes of 110 and 100 kb. Both libraries were used for the isolation of clones containing genetically mapped legume anchor markers (single copy genes), and resistance gene analogues. CONCLUSION: These diploid BAC libraries are important tools for the isolation of wild alleles conferring resistances to biotic stresses, comparisons of orthologous regions of the AA and BB genomes with each other and with other legume species, and will facilitate the construction of a physical map.


Assuntos
Arachis/genética , Cromossomos Artificiais Bacterianos , Diploide , Genoma de Planta , DNA de Plantas/química , DNA de Plantas/genética , Eletroforese em Gel de Campo Pulsado , Hibridização in Situ Fluorescente , Microscopia de Fluorescência , Peso Molecular
4.
Plant J ; 50(4): 574-85, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17425713

RESUMO

Modern sugarcane (Saccharum spp.) is an important grass that contributes 60% of the raw sugar produced worldwide and has a high biofuel production potential. It was created about a century ago through hybridization of two highly polyploid species, namely S. officinarum and S. spontaneum. We investigated genome dynamics in this highly polyploid context by analyzing two homoeologous sequences (97 and 126 kb) in a region that has already been studied in several cereals. Our findings indicate that the two Saccharum species diverged 1.5-2 million years ago from one another and 8-9 million years ago from sorghum. The two sugarcane homoeologous haplotypes show perfect colinearity as well as high gene structure conservation. Apart from the insertion of a few retrotransposable elements, high homology was also observed for the non-transcribed regions. Relative to sorghum, the sugarcane sequences displayed colinearity, with the exception of two genes present only in sorghum, and striking homology in most non-coding parts of the genome. The gene distribution highlighted high synteny and colinearity with rice, and partial colinearity with each homoeologous maize region, which became perfect when the sequences were combined. The haplotypes observed in sugarcane may thus closely represent the ancestral Andropogoneae haplotype. This analysis of sugarcane haplotype organization at the sequence level suggests that the high ploidy in sugarcane did not induce generalized reshaping of its genome, thus challenging the idea that polyploidy quickly induces generalized rearrangement of genomes. These results also confirm the view that sorghum is the model of choice for sugarcane.


Assuntos
Genes de Plantas , Poaceae/genética , Poliploidia , Saccharum/genética , Cromossomos Artificiais Bacterianos , DNA de Plantas/genética , Etiquetas de Sequências Expressas , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA