Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Biol Res ; 57(1): 2, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38191441

RESUMO

BACKGROUND: Increasing evidence suggests a double-faceted role of alpha-synuclein (α-syn) following infection by a variety of viruses, including SARS-CoV-2. Although α-syn accumulation is known to contribute to cell toxicity and the development and/or exacerbation of neuropathological manifestations, it is also a key to sustaining anti-viral innate immunity. Consistently with α-syn aggregation as a hallmark of Parkinson's disease, most studies investigating the biological function of α-syn focused on neural cells, while reports on the role of α-syn in periphery are limited, especially in SARS-CoV-2 infection. RESULTS: Results herein obtained by real time qPCR, immunofluorescence and western blot indicate that α-syn upregulation in peripheral cells occurs as a Type-I Interferon (IFN)-related response against SARS-CoV-2 infection. Noteworthy, this effect mostly involves α-syn multimers, and the dynamic α-syn multimer:monomer ratio. Administration of excess α-syn monomers promoted SARS-CoV-2 replication along with downregulation of IFN-Stimulated Genes (ISGs) in epithelial lung cells, which was associated with reduced α-syn multimers and α-syn multimer:monomer ratio. These effects were prevented by combined administration of IFN-ß, which hindered virus replication and upregulated ISGs, meanwhile increasing both α-syn multimers and α-syn multimer:monomer ratio in the absence of cell toxicity. Finally, in endothelial cells displaying abortive SARS-CoV-2 replication, α-syn multimers, and multimer:monomer ratio were not reduced following exposure to the virus and exogenous α-syn, suggesting that only productive viral infection impairs α-syn multimerization and multimer:monomer equilibrium. CONCLUSIONS: Our study provides novel insights into the biology of α-syn, showing that its dynamic conformations are implicated in the innate immune response against SARS-CoV-2 infection in peripheral cells. In particular, our results suggest that promotion of non-toxic α-syn multimers likely occurs as a Type-I IFN-related biological response which partakes in the suppression of viral replication. Further studies are needed to replicate our findings in neuronal cells as well as animal models, and to ascertain the nature of such α-syn conformations.


Assuntos
COVID-19 , Interferon Tipo I , SARS-CoV-2 , alfa-Sinucleína , Células Endoteliais , Humanos , Linhagem Celular , Replicação Viral
2.
Biol. Res ; 57: 2-2, 2024. ilus, graf
Artigo em Inglês | LILACS | ID: biblio-1550057

RESUMO

BACKGROUND: Increasing evidence suggests a double-faceted role of alpha-synuclein (α-syn) following infection by a variety of viruses, including SARS-CoV-2. Although α-syn accumulation is known to contribute to cell toxicity and the development and/or exacerbation of neuropathological manifestations, it is also a key to sustaining anti-viral innate immunity. Consistently with α-syn aggregation as a hallmark of Parkinson's disease, most studies investigating the biological function of α-syn focused on neural cells, while reports on the role of α-syn in periphery are limited, especially in SARS-CoV-2 infection. RESULTS: Results herein obtained by real time qPCR, immunofluorescence and western blot indicate that α-syn upregulation in peripheral cells occurs as a Type-I Interferon (IFN)-related response against SARS-CoV-2 infection. Noteworthy, this effect mostly involves α-syn multimers, and the dynamic α-syn multimer:monomer ratio. Administration of excess α-syn monomers promoted SARS-CoV-2 replication along with downregulation of IFN-Stimulated Genes (ISGs) in epithelial lung cells, which was associated with reduced α-syn multimers and α-syn multimer:monomer ratio. These effects were prevented by combined administration of IFN-ß, which hindered virus replication and upregulated ISGs, meanwhile increasing both α-syn multimers and α-syn multimer:monomer ratio in the absence of cell toxicity. Finally, in endothelial cells displaying abortive SARS-CoV-2 replication, α-syn multimers, and multimer:monomer ratio were not reduced following exposure to the virus and exogenous α-syn, suggesting that only productive viral infection impairs α-syn multimerization and multimer:monomer equilibrium. CONCLUSIONS: Our study provides novel insights into the biology of α-syn, showing that its dynamic conformations are implicated in the innate immune response against SARS-CoV-2 infection in peripheral cells. In particular, our results suggest that promotion of non-toxic α-syn multimers likely occurs as a Type-I IFN-related biological response which partakes in the suppression of viral replication. Further studies are needed to replicate our findings in neuronal cells as well as animal models, and to ascertain the nature of such α-syn conformations.


Assuntos
Humanos , Interferon Tipo I , alfa-Sinucleína , SARS-CoV-2 , COVID-19 , Replicação Viral , Linhagem Celular , Células Endoteliais
3.
Microbes Infect ; 19(1): 69-74, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27652980

RESUMO

We investigated whether a 6-amino acid insertion/deletion polymorphism in the mucin domain of TIM-1 (T-cell immunoglobulin and mucin domain 1), modulates susceptibility to HIV-1 infection. The polymorphism was genotyped in three case/control cohorts of HIV-1 exposed seronegative individuals (HESN) and HIV-1 infected subjects from Italy, Peru, and Colombia; data from a Thai population were retrieved from the literature. Across all cohorts, homozygosity for the short TIM-1 allele was more common in HESNs than in HIV-1 infected subjects. A meta-analysis of the four association analyses yielded a p value of 0.005. In vitro infection assays of CD4+ T lymphocytes indicated that homozygosity for the short allele is associated with lower rate of HIV-1 replication. These results suggest that the deletion allele protects from HIV-1 infection with a recessive effect.


Assuntos
Aminoácidos/genética , Resistência à Doença , Infecções por HIV/imunologia , HIV-1/imunologia , Receptor Celular 1 do Vírus da Hepatite A/genética , Polimorfismo Genético , Adulto , Estudos de Casos e Controles , Células Cultivadas , Estudos de Coortes , Colômbia , Feminino , Frequência do Gene , HIV-1/fisiologia , Humanos , Itália , Masculino , Pessoa de Meia-Idade , Mutagênese Insercional , Peru , Deleção de Sequência , Tailândia , Replicação Viral , Adulto Jovem
4.
J Acquir Immune Defic Syndr ; 73(5): 497-506, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27509245

RESUMO

BACKGROUND: Although the anti-HIV-1 effects of vitamin D (VitD) have been reported, mechanisms behind such protection remain largely unexplored. METHODS: The effects of two precursor forms (cholecalciferol/calciol at 0.01, 1 and 100 nM and calcidiol at 100 and 250 nM) on HIV-1 infection, immune activation, and gene expression were analyzed in vitro in cells of Colombian and Italian healthy donors. We quantified levels of released p24 by enzyme-linked immunosorbent assay, of intracellular p24 and cell-surface expression of CD38 and HLA-DR by flow cytometry, and mRNA expression of antiviral and immunoregulatory genes by real-time reverse transcription-polymerase chain reaction. RESULTS: Cholecalciferol decreased the frequency of HIV-1-infected p24CD4 T cells and levels of p24 in supernatants in a dose-dependent manner. Moreover, the CD4CD38HLA-DR and CD4CD38HLA-DR subpopulations were more susceptible to infection but displayed the greatest cholecalciferol-induced decreases in infection rate by an X4-tropic strain. Likewise, cholecalciferol at its highest concentration decreased the frequency of CD38HLA-DR but not of CD38HLA-DR T-cell subsets. Analyzing the effects of calcidiol, the main VitD source for immune cells and an R5-tropic strain as the most frequently transmitted virus, a reduction in HIV-1 productive infection was also observed. In addition, an increase in mRNA expression of APOBEC3G and PI3 and a reduction of TRIM22 and CCR5 expression, this latter positively correlated with p24 levels, was noted. CONCLUSIONS: VitD reduces HIV-1 infection in T cells possibly by inducing antiviral gene expression, reducing the viral co-receptor CCR5 and, at least at the highest cholecalciferol concentration, by promoting an HIV-1-restrictive CD38HLA-DR immunophenotype.


Assuntos
Fármacos Anti-HIV/farmacologia , Calcifediol/farmacologia , Colecalciferol/farmacologia , HIV-1/efeitos dos fármacos , HIV-1/crescimento & desenvolvimento , Fatores Imunológicos/farmacologia , ADP-Ribosil Ciclase 1/análise , Células Cultivadas , Colômbia , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Perfilação da Expressão Gênica , Proteína do Núcleo p24 do HIV/análise , Antígenos HLA-DR/análise , Humanos , Imunidade Inata/efeitos dos fármacos , Itália , Leucócitos Mononucleares/química , Leucócitos Mononucleares/virologia , Glicoproteínas de Membrana/análise , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA