Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EMBO Mol Med ; 15(12): e17907, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37860842

RESUMO

Following peripheral nerve injury, successful axonal growth and functional recovery require Schwann cell (SC) reprogramming into a reparative phenotype, a process dependent upon c-Jun transcription factor activation. Unfortunately, axonal regeneration is greatly impaired in aged organisms and following chronic denervation, which can lead to poor clinical outcomes. While diminished c-Jun expression in SCs has been associated with regenerative failure, it is unclear whether the inability to maintain a repair state is associated with the transition into an axonal growth inhibition phenotype. We here find that reparative SCs transition into a senescent phenotype, characterized by diminished c-Jun expression and secretion of inhibitory factors for axonal regeneration in aging and chronic denervation. In both conditions, the elimination of senescent SCs by systemic senolytic drug treatment or genetic targeting improved nerve regeneration and functional recovery, increased c-Jun expression and decreased nerve inflammation. This work provides the first characterization of senescent SCs and their influence on axonal regeneration in aging and chronic denervation, opening new avenues for enhancing regeneration and functional recovery after peripheral nerve injuries.


Assuntos
Traumatismos dos Nervos Periféricos , Humanos , Idoso , Traumatismos dos Nervos Periféricos/terapia , Traumatismos dos Nervos Periféricos/genética , Traumatismos dos Nervos Periféricos/metabolismo , Células de Schwann/metabolismo , Envelhecimento , Regulação da Expressão Gênica , Denervação
2.
J Neurochem ; 166(1): 87-106, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37328918

RESUMO

Ischemic stroke is a leading cause of disability worldwide. There is no simple treatment to alleviate ischemic brain injury, as thrombolytic therapy is applicable within a narrow time window. During the last years, the ketogenic diet (KD) and the exogenous administration of the ketone body ß-hydroxybutyrate (BHB) have been proposed as therapeutic tools for acute neurological disorders and both can reduce ischemic brain injury. However, the mechanisms involved are not completely clear. We have previously shown that the D enantiomer of BHB stimulates the autophagic flux in cultured neurons exposed to glucose deprivation (GD) and in the brain of hypoglycemic rats. Here, we have investigated the effect of the systemic administration of D-BHB, followed by its continuous infusion after middle cerebral artery occlusion (MCAO), on the autophagy-lysosomal pathway and the activation of the unfolded protein response (UPR). Results show for the first time that the protective effect of BHB against MCAO injury is enantiomer selective as only D-BHB, the physiologic enantiomer of BHB, significantly reduced brain injury. D-BHB treatment prevented the cleavage of the lysosomal membrane protein LAMP2 and stimulated the autophagic flux in the ischemic core and the penumbra. In addition, D-BHB notably reduced the activation of the PERK/eIF2α/ATF4 pathway of the UPR and inhibited IRE1α phosphorylation. L-BHB showed no significant effect relative to ischemic animals. In cortical cultures under GD, D-BHB prevented LAMP2 cleavage and decreased lysosomal number. It also abated the activation of the PERK/eIF2α/ATF4 pathway, partially sustained protein synthesis, and reduced pIRE1α. In contrast, L-BHB showed no significant effects. Results suggest that protection elicited by D-BHB treatment post-ischemia prevents lysosomal rupture allowing functional autophagy, preventing the loss of proteostasis and UPR activation.


Assuntos
Lesões Encefálicas , Acidente Vascular Cerebral , Ratos , Animais , Corpos Cetônicos/farmacologia , Corpos Cetônicos/metabolismo , Endorribonucleases/farmacologia , Proteínas Serina-Treonina Quinases , Estresse do Retículo Endoplasmático , Ácido 3-Hidroxibutírico/metabolismo , Ácido 3-Hidroxibutírico/farmacologia , Glucose/metabolismo , Autofagia , Infarto da Artéria Cerebral Média , Modelos Teóricos , Acidente Vascular Cerebral/tratamento farmacológico
3.
Oxid Med Cell Longev ; 2021: 6682336, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434486

RESUMO

Brain aging is characterized by dysfunctional autophagy and cellular senescence, among other features. While autophagy can either promote or suppress cellular senescence in proliferating cells, in postmitotic cells, such as neurons, autophagy impairment promotes cellular senescence. CRM1 (exportin-1/XPO1) exports hundreds of nuclear proteins into the cytoplasm, including the transcription factors TFEB (the main inducer of autophagy and lysosomal biogenesis genes) and STAT3, another autophagy modulator. It appears that CRM1 is a modulator of aging-associated senescence and autophagy, because pharmacological inhibition of CRM1 improved autophagic degradation in flies, by increasing nuclear TFEB levels, and because enhanced CRM1 activity is mechanistically linked to senescence in fibroblasts from Hutchinson-Gilford progeria syndrome patients and old healthy individuals; furthermore, the exogenous overexpression of CRM1 induced senescence in normal fibroblasts. In this work, we tested the hypothesis that impaired autophagic flux during brain aging occurs due to CRM1 accumulation in the brain. We found that CRM1 levels and activity increased in the hippocampus and cortex during physiological aging, which resulted in a decrease of nuclear TFEB and STAT3. Consistent with an autophagic flux impairment, we observed accumulation of the autophagic receptor p62/SQSTM1 in neurons of old mice, which correlated with increased neuronal senescence. Using an in vitro model of neuronal senescence, we demonstrate that CRM1 inhibition improved autophagy flux and reduced SA-ß-gal activity by restoring TFEB nuclear localization. Collectively, our data suggest that enhanced CRM1-mediated export of proteins during brain aging perturbs neuronal homeostasis, contributing to autophagy impairment, and neuronal senescence.


Assuntos
Envelhecimento/metabolismo , Autofagia , Encéfalo/metabolismo , Senescência Celular , Carioferinas/metabolismo , Neurônios/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Envelhecimento/patologia , Animais , Encéfalo/patologia , Camundongos , Camundongos Transgênicos , Neurônios/patologia , Ratos , Ratos Wistar , Proteína Exportina 1
4.
Front Aging Neurosci ; 12: 581767, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192476

RESUMO

Alzheimer's disease (AD) represents the most common age-related neurodegenerative disorder, affecting around 35 million people worldwide. Despite enormous efforts dedicated to AD research over decades, there is still no cure for the disease. Misfolding and accumulation of Aß and tau proteins in the brain constitute a defining signature of AD neuropathology, and mounting evidence has documented a link between aggregation of these proteins and neuronal dysfunction. In this context, progressive axonal degeneration has been associated with early stages of AD and linked to Aß and tau accumulation. As the axonal degeneration mechanism has been starting to be unveiled, it constitutes a promising target for neuroprotection in AD. A comprehensive understanding of the mechanism of axonal destruction in neurodegenerative conditions is therefore critical for the development of new therapies aimed to prevent axonal loss before irreversible neuronal death occurs in AD. Here, we review current evidence of the involvement of Aß and tau pathologies in the activation of signaling cascades that can promote axonal demise.

5.
Mol Neurobiol ; 56(9): 6594-6608, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30905004

RESUMO

Autophagy is considered a major bulk degradation system that helps cells to counteract different intracellular and extracellular stress signals. Several protein complexes integrate multiple signals in order to activate autophagy, which sequesters damaged cellular components and carries them to lysosomes for degradation. This active mechanism is essential to maintain cell homeostasis and particularly in neurons to sustain their viability. Because of their polarized morphology, neurons face special challenges to recycle cellular components through autophagy in dendrites and distal regions of axons. Thus, autophagy is critical in the remodeling of pre- and post-synaptic constituents to sustain neuronal functionality. Under stress conditions, autophagy may play either a cytotoxic or a cytoprotective role. This discrepancy is partly due to the lack of a full characterization of the autophagic process and conclusive evidence to support whether basal autophagy is stimulated or impaired in a particular condition. Moreover, in many studies, only pharmacologic tools have been used to modulate autophagy. Throughout the present review, we go over the literature revealing autophagy induction in the nervous system under diverse stressful conditions, the signaling pathways involved, and its consequences for neuronal homeostasis and survival. We have focused on five particular stress conditions that alter neuronal homeostasis and can induce neuronal death including, starvation, oxidative stress, endoplasmic reticulum (ER) stress, proteotoxic stress, and aging.


Assuntos
Autofagia , Sistema Nervoso Central/patologia , Homeostase , Estresse Fisiológico , Envelhecimento/patologia , Animais , Humanos , Estresse Oxidativo
6.
Neurochem Res ; 41(3): 600-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26303508

RESUMO

Glucose is the major energy substrate in brain, however, during ketogenesis induced by starvation or prolonged hypoglycemia, the ketone bodies (KB), acetoacetate and ß-hydroxybutyrate (BHB) can substitute for glucose. KB improve neuronal survival in diverse injury models, but the mechanisms by which KB prevent neuronal damage are still not well understood. In the present study we have investigated whether protection by the D isomer of BHB (D-BHB) against neuronal death induced by glucose deprivation (GD), is related to autophagy. Autophagy is a lysosomal-dependent degradation process activated during nutritional stress, which leads to the digestion of damaged proteins and organelles providing energy for cell survival. Results show that autophagy is activated in cortical cultured neurons during GD, as indicated by the increase in the levels of the lipidated form of the microtubule associated protein light chain 3 (LC3-II), and the number of autophagic vesicles. At early phases of glucose reintroduction (GR), the levels of p62 declined suggesting that the degradation of the autophagolysosomal content takes place at this time. In cultures exposed to GD and GR in the presence of D-BHB, the levels of LC3-II and p62 rapidly declined and remained low during GR, suggesting that the KB stimulates the autophagic flux preventing autophagosome accumulation and improving neuronal survival.


Assuntos
Ácido 3-Hidroxibutírico/metabolismo , Autofagia , Córtex Cerebral/citologia , Glucose/metabolismo , Neurônios/citologia , Ácido 3-Hidroxibutírico/química , Ácido 3-Hidroxibutírico/farmacologia , Animais , Sobrevivência Celular , Células Cultivadas , Córtex Cerebral/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos Wistar , Proteína Sequestossoma-1 , Estereoisomerismo
7.
Methods Mol Biol ; 1010: 177-200, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23754226

RESUMO

Huntington's disease (HD) is a hereditary neurodegenerative disorder, characterized by motor, psychiatric, and cognitive symptoms. The genetic defect responsible for the onset of the disease, expansion of CAG repeats in exon 1 of the gene that codes for huntingtin, has been unambiguously identified. The mechanisms by which the mutation causes the disease are not completely understood yet. However, defects in the energy metabolism of affected cells, which may cause oxidative damage, have been proposed as underlying molecular mechanisms that participate in the etiology of the disease. In this chapter, we describe biochemical methods that allow us to determine striatal oxidative damage in transgenic mice and in the quinolinic acid-induced excitotoxicity model in rat, and establish the status of protective cellular systems. The excitotoxic model is acute, easier and faster to perform than the transgenic model, and can within a short period provide valuable data to try new therapeutic strategies. The methods described in this chapter permit us to link the kynurenine pathway with the cascade of toxic and harmful reactions that cause the damage observed in HD. We consider that determining the mechanisms inducing oxidative damage in two different models of HD will allow the testing of drugs or other therapeutic strategies with antioxidant activities.


Assuntos
Antioxidantes/metabolismo , Doença de Huntington/metabolismo , Estresse Oxidativo , Animais , Comportamento Animal , DNA/genética , DNA/isolamento & purificação , Modelos Animais de Doenças , Genótipo , Glutationa/metabolismo , Humanos , Doença de Huntington/genética , Peroxidação de Lipídeos , Camundongos , Neostriado/metabolismo , Óxido Nítrico Sintase/metabolismo , Reação em Cadeia da Polimerase , Ratos , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA