Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Virus Evol ; 9(1): vead027, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37207002

RESUMO

Influenza A virus (IAV) circulation patterns differ in North America and South America, with influenza seasons often characterized by different subtypes and strains. However, South America is relatively undersampled considering the size of its population. To address this gap, we sequenced the complete genomes of 220 IAVs collected between 2009 and 2016 from hospitalized patients in southern Brazil. New genetic drift variants were introduced into southern Brazil each season from a global gene pool, including four H3N2 clades (3c, 3c2, 3c3, and 3c2a) and five H1N1pdm clades (clades 6, 7, 6b, 6c, and 6b1). In 2016, H1N1pdm viruses belonging to a new 6b1 clade caused a severe influenza epidemic in southern Brazil that arrived early and spread rapidly, peaking mid-autumn. Inhibition assays showed that the A/California/07/2009(H1N1) vaccine strain did not protect well against 6b1 viruses. Phylogenetically, most 6b1 sequences that circulated in southern Brazil belong to a single transmission cluster that rapidly diffused across susceptible populations, leading to the highest levels of influenza hospitalization and mortality seen since the 2009 pandemic. Continuous genomic surveillance is needed to monitor rapidly evolving IAVs for vaccine strain selection and understand their epidemiological impact in understudied regions.

2.
Microbiome ; 8(1): 39, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32178738

RESUMO

BACKGROUND: The abundance and diversity of antibiotic resistance genes (ARGs) in the human respiratory microbiome remain poorly characterized. In the context of influenza virus infection, interactions between the virus, the host, and resident bacteria with pathogenic potential are known to complicate and worsen disease, resulting in coinfection and increased morbidity and mortality of infected individuals. When pathogenic bacteria acquire antibiotic resistance, they are more difficult to treat and of global health concern. Characterization of ARG expression in the upper respiratory tract could help better understand the role antibiotic resistance plays in the pathogenesis of influenza-associated bacterial secondary infection. RESULTS: Thirty-seven individuals participating in the Household Influenza Transmission Study (HITS) in Managua, Nicaragua, were selected for this study. We performed metatranscriptomics and 16S rRNA gene sequencing analyses on nasal and throat swab samples, and host transcriptome profiling on blood samples. Individuals clustered into two groups based on their microbial gene expression profiles, with several microbial pathways enriched with genes differentially expressed between groups. We also analyzed antibiotic resistance gene expression and determined that approximately 25% of the sequence reads that corresponded to antibiotic resistance genes mapped to Streptococcus pneumoniae and Staphylococcus aureus. Following construction of an integrated network of ARG expression with host gene co-expression, we identified several host key regulators involved in the host response to influenza virus and bacterial infections, and host gene pathways associated with specific antibiotic resistance genes. CONCLUSIONS: This study indicates the host response to influenza infection could indirectly affect antibiotic resistance gene expression in the respiratory tract by impacting the microbial community structure and overall microbial gene expression. Interactions between the host systemic responses to influenza infection and antibiotic resistance gene expression highlight the importance of viral-bacterial co-infection in acute respiratory infections like influenza. Video abstract.


Assuntos
Bactérias/efeitos dos fármacos , Interações entre Hospedeiro e Microrganismos , Influenza Humana/microbiologia , Microbiota , Infecções Respiratórias/virologia , Adolescente , Adulto , Bactérias/genética , Bactérias/patogenicidade , Criança , Pré-Escolar , Coinfecção/microbiologia , Coinfecção/fisiopatologia , Coinfecção/virologia , Farmacorresistência Bacteriana/genética , Feminino , Perfilação da Expressão Gênica , Humanos , Influenza Humana/fisiopatologia , Masculino , Nicarágua , RNA Ribossômico 16S/genética , Staphylococcus aureus/genética , Streptococcus pneumoniae/genética , Adulto Jovem
3.
Health Sci Rep ; 1(6): 1-7, June 2018. tab
Artigo em Inglês | Coleciona SUS, CONASS, SES-RS | ID: biblio-1120552

RESUMO

Aims: Influenza A virus (IAV) can cause severe acute respiratory infection (SARI), and disease outcome may be associated with changes in the microbiome of the nasopharynx. This is a pilot study to characterize the microbiome of the nasopharynx in patients hospitalized with SARI, infected and not infected by IAV. Methods and Results: Using target sequencing of the 16S rRNA gene, we assessed the bacterial community of nasopharyngeal aspirate samples and compared the microbiome of patients infected with IAV with the microbiome of patients who were negative for IAV. We observed differences in the relative abundance of Proteobacteria and Firmicutes between SARI patients, with Streptococcus being enriched and Pseudomonas underrepresented in IAV patients compared with patients who were not infected with IAV. Conclusion: Pseudomonas taxon seems to be in high frequency on the nasopharynx of SARI patients with non­IAV infection and might present a negative association with Streptococcus taxon. Microbial profile appears to be different between SARI patients infected or not infected with IAV.


Assuntos
Humanos , Masculino , Feminino , Vírus da Influenza A , Doenças Respiratórias , Infecções Respiratórias , Coinfecção , Microbiota , Pseudomonas , Streptococcus , RNA Ribossômico 16S , Projetos Piloto , Nasofaringe
4.
J Gen Virol ; 95(Pt 4): 787-792, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24421116

RESUMO

Arboretum virus (ABTV) and Puerto Almendras virus (PTAMV) are two mosquito-associated rhabdoviruses isolated from pools of Psorophora albigenu and Ochlerotattus fulvus mosquitoes, respectively, collected in the Department of Loreto, Peru, in 2009. Initial tests suggested that both viruses were novel rhabdoviruses and this was confirmed by complete genome sequencing. Analysis of their 11 482 nt (ABTV) and 11 876 (PTAMV) genomes indicates that they encode the five canonical rhabdovirus structural proteins (N, P, M, G and L) with an additional gene (U1) encoding a small hydrophobic protein. Evolutionary analysis of the L protein indicates that ABTV and PTAMV are novel and phylogenetically distinct rhabdoviruses that cannot be classified as members of any of the eight currently recognized genera within the family Rhabdoviridae, highlighting the vast diversity of this virus family.


Assuntos
Culicidae/virologia , Genoma Viral , RNA Viral/genética , Rhabdoviridae/classificação , Rhabdoviridae/isolamento & purificação , Análise de Sequência de DNA , Animais , Análise por Conglomerados , Feminino , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Fases de Leitura Aberta , Peru , Filogenia , Rhabdoviridae/genética , Homologia de Sequência , Proteínas Virais/genética , Vírion/ultraestrutura
5.
J Virol ; 87(22): 12080-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23986601

RESUMO

Myxomatosis is a rapidly lethal disease of European rabbits that is caused by myxoma virus (MYXV). The introduction of a South American strain of MYXV into the European rabbit population of Australia is the classic case of host-pathogen coevolution following cross-species transmission. The most virulent strains of MYXV for European rabbits are the Californian viruses, found in the Pacific states of the United States and the Baja Peninsula, Mexico. The natural host of Californian MYXV is the brush rabbit, Sylvilagus bachmani. We determined the complete sequence of the MSW strain of Californian MYXV and performed a comparative analysis with other MYXV genomes. The MSW genome is larger than that of the South American Lausanne (type) strain of MYXV due to an expansion of the terminal inverted repeats (TIRs) of the genome, with duplication of the M156R, M154L, M153R, M152R, and M151R genes and part of the M150R gene from the right-hand (RH) end of the genome at the left-hand (LH) TIR. Despite the extreme virulence of MSW, no novel genes were identified; five genes were disrupted by multiple indels or mutations to the ATG start codon, including two genes, M008.1L/R and M152R, with major virulence functions in European rabbits, and a sixth gene, M000.5L/R, was absent. The loss of these gene functions suggests that S. bachmani is a relatively recent host for MYXV and that duplication of virulence genes in the TIRs, gene loss, or sequence variation in other genes can compensate for the loss of M008.1L/R and M152R in infections of European rabbits.


Assuntos
Adaptação Fisiológica/genética , Genoma Viral , Myxoma virus/genética , Mixomatose Infecciosa/virologia , Infecções Tumorais por Vírus/virologia , Proteínas Virais/genética , Virulência/genética , Animais , Sequência de Bases , Evolução Biológica , California , Europa (Continente) , México , Dados de Sequência Molecular , Myxoma virus/classificação , Myxoma virus/patogenicidade , Mixomatose Infecciosa/genética , Filogenia , Coelhos , Homologia de Sequência do Ácido Nucleico , Sequências Repetidas Terminais/genética , Infecções Tumorais por Vírus/genética , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA