Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Plast Reconstr Surg Glob Open ; 11(8): e5215, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37600833

RESUMO

The encephalocele is a malformation that is manifested by the protrusion of brain tissue through a defect in the skull. The meningoencephalocele contains the meninges and brain tissue. Frontoethmoidal or nasal meningoencephalocele is rare; the frequency is approximately one in 40,000 live births. Three subtypes are currently known: nasoethmoid, nasofrontal, and nasoorbital. The authors report the clinical case of a 2-month-old girl with a very rare giant nasofrontal meningoencephalocele, which affected vision and breathing. The patient underwent surgery at an early age to avoid significant functional sequelae and promote the normal development and growth of the girl.

2.
Front Oncol ; 13: 1304662, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38250553

RESUMO

Introduction: The decisive key to disease-free survival in B-cell precursor acute lymphoblastic leukemia in children, is the combination of diagnostic timeliness and treatment efficacy, guided by accurate patient risk stratification. Implementation of standardized and high-precision diagnostic/prognostic systems is particularly important in the most marginalized geographic areas in Mexico, where high numbers of the pediatric population resides and the highest relapse and early death rates due to acute leukemias are recorded even in those cases diagnosed as standard risk. Methods: By using a multidimensional and integrated analysis of the immunophenotype of leukemic cells, the immunological context and the tumor microenvironment, this study aim to capture the snapshot of acute leukemia at disease debut of a cohort of Mexican children from vulnerable regions in Puebla, Oaxaca and Tlaxcala and its potential use in risk stratification. Results and discussion: Our findings highlight the existence of a distinct profile of ProB-ALL in children older than 10 years, which is associated with a six-fold increase in the risk of developing measurable residual disease (MRD). Along with the absence of CD34+ seminal cells for normal hematopoiesis, this ProB-ALL subtype exhibited several characteristics related to poor prognosis, including the high expression level of myeloid lineage markers such as MPO and CD33, as well as upregulation of CD19, CD34, CD24, CD20 and nuTdT. In contrast, it showed a trend towards decreased expression of CD9, CD81, CD123, CD13, CD15 and CD21. Of note, the mesenchymal stromal cell compartment constituting their leukemic niche in the bone marrow, displayed characteristics of potential suppressive microenvironment, such as the expression of Gal9 and IDO1, and the absence of the chemokine CXCL11. Accordingly, adaptive immunity components were poorly represented. Taken together, our results suggest, for the first time, that a biologically distinct subtype of ProB-ALL emerges in vulnerable adolescents, with a high risk of developing MRD. Rigorous research on potential enhancing factors, environmental or lifestyle, is crucial for its detection and prevention. The use of the reported profile for early risk stratification is suggested.

3.
Cytotherapy ; 22(10): 563-572, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32723595

RESUMO

BACKGROUND AIMS: Peripheral arterial disease (PAD) is a progressive, disabling ailment for which no effective treatment exists. Gene therapy-mediated neovascularization has emerged as a potentially useful strategy. We tested the angiogenic and arteriogenic efficacy and safety of a baculovirus (BV) encoding mutant, oxygen-resistant hypoxia-inducible factor 1-alpha (mHIF-1α), in rabbits with PAD. METHODS: After assessing the transfection efficiency of the BV.mHIF-1α vector and its tubulogenesis potential in vitro, we randomized rabbits with experimental PAD to receive 1 × 109 copies of BV.mHIF-1α or BV.null (n = 6 per group) 7 days after surgery. Two weeks post-treatment, collateralization (digital angiography) and capillary and arteriolar densities (immunohistochemistry) were measured in the posterior limbs. Ischemic damage was evaluated in adductor and gastrocnemius muscle samples. Tracking of viral DNA in injected zones and remote tissues at different time points was performed in additional rabbits using a BV encoding GFP. RESULTS: Angiographically visible collaterals were more numerous in BV.mHIF-1α-treated rabbits (8.12 ± 0.42 vs 6.13 ± 1.15 collaterals/cm2, P < 0.05). The same occurred with arteriolar (27.9 ± 7.0 vs 15.3 ± 4.0 arterioles/mm2) and capillary (341.8 ± 109.9 vs 208.8 ± 87.7 capillaries/mm2, P < 0.05) densities. BV.mHIF-1α-treated rabbits displayed less ischemic muscle damage than BV.null-treated animals. Viral DNA and GFP mRNA were detectable only at 3 and 7 days after injection in hind limbs. Neither the virus nor GFP mRNA was detected in remote tissues. CONCLUSIONS: In rabbits with PAD, BV.mHIF-1α induced neovascularization and reduced ischemic damage, exhibiting a good safety profile at 14 days post-treatment. Complementary studies to evaluate its potential usefulness in the clinic are needed.


Assuntos
Baculoviridae/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Isquemia/terapia , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/patologia , Neovascularização Fisiológica , Doença Arterial Periférica/terapia , Animais , Arteríolas , Modelos Animais de Doenças , Expressão Gênica , Terapia Genética , Membro Posterior/irrigação sanguínea , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Isquemia/patologia , Microvasos/patologia , Doença Arterial Periférica/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Coelhos , Transfecção
4.
Am J Physiol Heart Circ Physiol ; 318(4): H994-H1007, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32167779

RESUMO

The adult mammalian cardiomyocyte has a very limited capacity to reenter the cell cycle and advance into mitosis. Therefore, diseases characterized by lost contractile tissue usually evolve into myocardial remodeling and heart failure. Analyzing the cardiac transcriptome at different developmental stages in a large mammal closer to the human than laboratory rodents may serve to disclose positive and negative cardiomyocyte cell cycle regulators potentially targetable to induce cardiac regeneration in the clinical setting. Thus we aimed at characterizing the transcriptomic profiles of the early fetal, late fetal, and adult sheep heart by employing RNA-seq technique and bioinformatic analysis to detect protein-encoding genes that in some of the stages were turned off, turned on, or differentially expressed. Genes earlier proposed as positive cell cycle regulators such as cyclin A, cdk2, meis2, meis3, and PCNA showed higher expression in fetal hearts and lower in AH, as expected. In contrast, genes previously proposed as cell cycle inhibitors, such as meis1, p16, and sav1, tended to be higher in fetal than in adult hearts, suggesting that these genes are involved in cell processes other than cell cycle regulation. Additionally, we described Gene Ontology (GO) enrichment of different sets of genes. GO analysis revealed that differentially expressed gene sets were mainly associated with metabolic and cellular processes. The cell cycle-related genes fam64a, cdc20, and cdk1, and the metabolism-related genes pitx and adipoq showed strong differential expression between fetal and adult hearts, thus being potent candidates to be targeted in human cardiac regeneration strategies.NEW & NOTEWORTHY We characterized the transcriptomic profiles of the fetal and adult sheep hearts employing RNAseq technique and bioinformatic analyses to provide sets of transcripts whose variation in expression level may link them to a specific role in cell cycle regulation. It is important to remark that this study was performed in a large mammal closer to humans than laboratory rodents. In consequence, the results can be used for further translational studies in cardiac regeneration.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Coração/fisiologia , Miocárdio/metabolismo , Regeneração , Transcriptoma , Animais , Ciclina A/genética , Ciclina A/metabolismo , Feminino , Coração/crescimento & desenvolvimento , Masculino , Ovinos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Drug Deliv Transl Res ; 9(5): 935-944, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30859393

RESUMO

In rodents with acute myocardial infarction (AMI), high mobility group box 1 (HMGB1) injection has produced controversial results. Given the lack of data in large mammals, we searched the dose that would promote angiogenesis and expression of specific regenerative genes in sheep with AMI (protocol 1) and, subsequently, use this dose to study long-term effects on infarct size and left ventricular (LV) function (protocol 2). Protocol 1: Sheep with AMI received 250 µg (high-dose, n = 7), 25 µg (low-dose, n = 7) HMGB1, or PBS (placebo, n = 7) in 10 intramyocardial injections (0.2 ml each) in the peri-infarct area. Seven days later, only the high-HMGB1-dose group exhibited higher microvascular densities, Ki67-positive cardiomyocytes, and overexpression of VEGF, Ckit, Tbx20, Nkx2.5, and Gata4. Protocol 2: Sheep with AMI received HMGB1 250 µg (n = 6) or PBS (n = 6). At 60 days, HMGB1-treated sheep showed smaller infarcts (8.5 ± 2.11 vs. 12.2 ± 1.97% LV area, P < 0.05, ANOVA-Bonferroni) and higher microvascular density (capillaries, 1798 ± 252 vs. 1266 ± 250/mm2; arterioles, 18.3 ± 3.9 vs. 11.7 ± 2.2/mm2; both P < 0.01). Echocardiographic LV ejection fraction, circumferential shortening, and wall thickening increased from day 3 to 60 with HMGB1 (all P < 0.05). Conclusion: in ovine AMI, high-dose HMGB1 induces angio-arteriogenesis, reduces infarct size, and improves LV function at 2 months post-treatment.


Assuntos
Cardiotônicos/administração & dosagem , Proteína HMGB1/administração & dosagem , Infarto do Miocárdio/tratamento farmacológico , Animais , Feminino , Masculino , Microvasos/efeitos dos fármacos , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , Ovinos , Função Ventricular Esquerda/efeitos dos fármacos
6.
Curr Drug Targets ; 20(2): 241-254, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30068271

RESUMO

Adult mammalian cardiomyocytes (CMs) exhibit limited proliferative capacity, as cell cycle activity leads to an increase in DNA content, but mitosis and cytokinesis are infrequent. This makes the heart highly inefficient in replacing with neoformed cardiomyocytes lost contractile cells as occurs in diseases such as myocardial infarction and dilated cardiomyopathy. Regenerative therapies based on the implant of stem cells of diverse origin do not warrant engraftment and electromechanical connection of the new cells with the resident ones, a fundamental condition to restore the physiology of the cardiac syncytium. Consequently, there is a growing interest in identifying factors playing relevant roles in the regulation of the CM cell cycle to be targeted in order to induce the resident cardiomyocytes to divide into daughter cells and thus achieve myocardial regeneration with preservation of physiologic syncytial performance. Despite the scientific progress achieved over the last decades, many questions remain unanswered, including how cardiomyocyte proliferation is regulated during heart development in gestation and neonatal life. This can reveal unknown cell cycle regulation mechanisms and molecules that may be manipulated to achieve cardiac self-regeneration. We hereby revise updated data on CM cell cycle regulation, participating molecules and pathways recently linked with the cell cycle, as well as experimental therapies involving them.


Assuntos
Miócitos Cardíacos/fisiologia , Regeneração , Animais , Ciclo Celular , Proliferação de Células , Redes Reguladoras de Genes , Humanos
7.
Artif Cells Nanomed Biotechnol ; 46(sup3): S717-S724, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30289284

RESUMO

Diaphragmatic myoblasts (DM) are stem cells of the diaphragm, a muscle displaying high resistance to stress and exhaustion. We hypothesized that DM modified to overexpress connexin-43 (cx43), seeded on aligned poly (l-lactic acid) (PLLA) sheets would decrease infarct size and improve ventricular function in sheep with acute myocardial infarction (AMI). Sheep with AMI received PLLA sheets without DM (PLLA group), sheets with DM (PLLA-DM group), sheets with DM overexpressing cx43 (PLLA-DMcx43) or no treatment (control group, n = 6 per group). Infarct size (cardiac magnetic resonance) decreased ∼25% in PLLA-DMcx43 [from 8.2 ± 0.6 ml (day 2) to 6.5 ± 0.7 ml (day 45), p < .01, ANOVA-Bonferroni] but not in the other groups. Ejection fraction (EF%) (echocardiography) at 3 days post-AMI fell significantly in all groups. At 45 days, PLLA-DM y PLLA-DMcx43 recovered their EF% to pre-AMI values (PLLA-DM: 61.1 ± 0.5% vs. 58.9 ± 3.3%, p = NS; PLLA-DMcx43: 64.6 ± 2.9% vs. 56.9 ± 2.4%, p = NS), but not in control (56.8 ± 2.0% vs. 43.8 ± 1.1%, p < .01) and PLLA (65.7 ± 2.1% vs. 56.6 ± 4.8%, p < .01). Capillary density was higher (p < .05) in PLLA-DMcx43 group than in the remaining groups. In conclusion, PLLA-DMcx43 reduces infarct size in sheep with AMI. PLLA-DMcx43 and PLLA-DM improve ventricular function similarly. Given its safety and feasibility, this novel approach may prove beneficial in the clinic.


Assuntos
Conexina 43/biossíntese , Oclusão Coronária , Diafragma/metabolismo , Mioblastos , Infarto do Miocárdio , Poliésteres/química , Alicerces Teciduais/química , Função Ventricular , Animais , Oclusão Coronária/metabolismo , Oclusão Coronária/patologia , Oclusão Coronária/fisiopatologia , Oclusão Coronária/terapia , Diafragma/patologia , Masculino , Mioblastos/metabolismo , Mioblastos/patologia , Mioblastos/transplante , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/terapia , Ovinos
8.
J Chem Phys ; 148(4): 044113, 2018 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-29390844

RESUMO

Several issues concerning Breit correction to electron-electron interaction in many-electron systems, which are important in precise atomic and molecular calculations, are presented. At first, perturbative versus self-consistent calculations of Breit correction were studied in selected cases. Second, the Z-dependence of Breit contribution per subshell is shown, based on values calculated for selected atoms with 30 ≤ Z ≤ 118. Third, the relations between magnetic and retardation parts of Breit interaction are analyzed. Finally, Gaunt contribution calculated for Kr, Xe, and Rn noble gas atoms and its iso-electronic HBr, HI, and HAt diatomic molecules has been compared to full-Breit atomic calculations. We found that Breit corrections should be treated by self-consistent calculations and that there is a functional dependence of those corrections for subshells as εnlBreit(Z)≃a×Zb. We also found that molecular Gaunt corrections are close to their atomic counterparts for inner electrons though they are not for outer orbitals. In any case, accurate calculations must include retardation correction in addition to Gaunt.

9.
Cytotechnology ; 70(2): 651-664, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29143226

RESUMO

Diaphragmatic myoblasts (DMs) are precursors of type-1 muscle cells displaying high exhaustion threshold on account that they contract and relax 20 times/min over a lifespan, making them potentially useful in cardiac regeneration strategies. Besides, it has been shown that biomaterials for stem cell delivery improve cell retention and viability in the target organ. In the present study, we aimed at developing a novel approach based on the use of poly (L-lactic acid) (PLLA) scaffolds seeded with DMs overexpressing connexin-43 (cx43), a gap junction protein that promotes inter-cell connectivity. DMs isolated from ovine diaphragm biopsies were characterized by immunohistochemistry and ability to differentiate into myotubes (MTs) and transduced with a lentiviral vector encoding cx43. After confirming cx43 expression (RT-qPCR and Western blot) and its effect on inter-cell connectivity (fluorescence recovery after photobleaching), DMs were grown on fiber-aligned or random PLLA scaffolds. DMs were successfully isolated and characterized. Cx43 mRNA and protein were overexpressed and favored inter-cell connectivity. Alignment of the scaffold fibers not only aligned but also elongated the cells, increasing the contact surface between them. This novel approach is feasible and combines the advantages of bioresorbable scaffolds as delivery method and a cell type that on account of its features may be suitable for cardiac regeneration. Future studies on animal models of myocardial infarction are needed to establish its usefulness on scar reduction and cardiac function.

10.
J Am Heart Assoc ; 5(7)2016 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-27385426

RESUMO

BACKGROUND: Bone marrow mesenchymal stromal cells (BMMSCs) are cardioprotective in acute myocardial infarction (AMI) because of release of paracrine angiogenic and prosurvival factors. Hypoxia-inducible factor 1-α (HIF1-α), rapidly degraded during normoxia, is stabilized during ischemia and upregulates various cardioprotective genes. We hypothesized that BMMSCs engineered to overexpress mutant, oxygen-resistant HIF1-α would confer greater cardioprotection than nontransfected BMMSCs in sheep with AMI. METHODS AND RESULTS: Allogeneic BMMSCs transfected with a minicircle vector encoding mutant HIF1-α (BMMSC-HIF) were injected in the peri-infarct of sheep (n=6) undergoing coronary occlusion. Over 2 months, infarct volume measured by cardiac magnetic resonance (CMR) imaging decreased by 71.7±1.3% (P<0.001), and left ventricular (LV) percent ejection fraction (%EF) increased near 2-fold (P<0.001) in the presence of markedly decreased end-systolic volume. Sheep receiving nontransfected BMMSCs (BMMSC; n=6) displayed less infarct size limitation and percent LVEF improvement, whereas in placebo-treated animals (n=6), neither parameters changed over time. HIF1-α-transfected BMMSCs (BMMSC-HIF) induced angio-/arteriogenesis and decreased apoptosis by HIF1-mediated overexpression of erythropoietin, inducible nitrous oxide synthase, vascular endothelial growth factor, and angiopoietin-1. Cell tracking using paramagnetic iron nanoparticles in 12 additional sheep revealed enhanced long-term retention of BMMSC-HIF. CONCLUSIONS: Intramyocardial delivery of BMMSC-HIF reduced infarct size and improved LV systolic performance compared to BMMSC, attributed to increased neovascularization and cardioprotective effects induced by HIF1-mediated overexpression of paracrine factors and enhanced retention of injected cells. Given the safety of the minicircle vector and the feasibility of BMMSCs for allogeneic application, this treatment may be potentially useful in the clinic.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Infarto do Miocárdio/terapia , Animais , Modelos Animais de Doenças , Citometria de Fluxo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Immunoblotting , Imageamento por Ressonância Magnética , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/patologia , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA