Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(6)2023 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-37376689

RESUMO

The Costa Rican pygmy rice rat (Oligoryzomys costaricensis) is the primary reservoir of Choclo orthohantavirus (CHOV), the causal agent of hantavirus disease, pulmonary syndrome, and fever in humans in Panama. Since the emergence of CHOV in early 2000, we have systematically sampled and archived rodents from >150 sites across Panama to establish a baseline understanding of the host and virus, producing a permanent archive of holistic specimens that we are now probing in greater detail. We summarize these collections and explore preliminary habitat/virus associations to guide future wildlife surveillance and public health efforts related to CHOV and other zoonotic pathogens. Host sequences of the mitochondrial cytochrome b gene form a single monophyletic clade in Panama, despite wide distribution across Panama. Seropositive samples were concentrated in the central region of western Panama, consistent with the ecology of this agricultural commensal and the higher incidence of CHOV in humans in that region. Hantavirus seroprevalence in the pygmy rice rat was >15% overall, with the highest prevalence in agricultural areas (21%) and the lowest prevalence in shrublands (11%). Host-pathogen distribution, transmission dynamics, genomic evolution, and habitat affinities can be derived from the preserved samples, which include frozen tissues, and now provide a foundation for expanded investigations of orthohantaviruses in Panama.


Assuntos
Infecções por Hantavirus , Orthohantavírus , Animais , Ratos , Humanos , Animais Selvagens , Estudos Soroepidemiológicos , Infecções por Hantavirus/epidemiologia , Infecções por Hantavirus/veterinária , Sigmodontinae , Roedores , Orthohantavírus/genética , Reservatórios de Doenças
2.
Am J Trop Med Hyg ; 82(1): 95-102, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20065002

RESUMO

Within the United States, the majority of human plague cases are reported from New Mexico. We describe climatic factors involved in intra- and inter-annual plague dynamics using animal-based surveillance data from that state. Unlike the clear seasonal pattern observed at lower elevations, cases occur randomly throughout the year at higher elevations. Increasing elevation corresponded with delayed mean time in case presentation. Using local meteorological data (previous year mean annual precipitation, total degrees over 27 degrees C 3 years before and maximum winter temperatures 4 years before) we built a time-series model predicting annual case load that explained 75% of the variance in pet cases between years. Moreover, we found a significant correlation with observed annual human cases and predicted pet cases. Because covariates were time-lagged by at least 1 year, intensity of case loads can be predicted in advance of a plague season. Understanding associations between environmental and meteorological factors can be useful for anticipating future disease trends.


Assuntos
Clima , Peste/epidemiologia , Vigilância da População , Animais , Gatos , Cães , Humanos , New Mexico/epidemiologia , Estações do Ano
3.
PLoS Med ; 6(11): e1000168, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19918363

RESUMO

BACKGROUND: The mosquito-borne dengue viruses are a major public health problem throughout the tropical and subtropical regions of the world. Changes in temperature and precipitation have well-defined roles in the transmission cycle and may thus play a role in changing incidence levels. The El Niño Southern Oscillation (ENSO) is a multiyear climate driver of local temperature and precipitation worldwide. Previous studies have reported varying degrees of association between ENSO and dengue incidence. METHODS AND FINDINGS: We analyzed the relationship between ENSO, local weather, and dengue incidence in Puerto Rico, Mexico, and Thailand using wavelet analysis to identify time- and frequency-specific association. In Puerto Rico, ENSO was transiently associated with temperature and dengue incidence on multiyear scales. However, only local precipitation and not temperature was associated with dengue on multiyear scales. In Thailand, ENSO was associated with both temperature and precipitation. Although precipitation was associated with dengue incidence, the association was nonstationary and likely spurious. In Mexico, no association between any of the variables was observed on the multiyear scale. CONCLUSIONS: The evidence for a relationship between ENSO, climate, and dengue incidence presented here is weak. While multiyear climate variability may play a role in endemic interannual dengue dynamics, we did not find evidence of a strong, consistent relationship in any of the study areas. The role of ENSO may be obscured by local climate heterogeneity, insufficient data, randomly coincident outbreaks, and other, potentially stronger, intrinsic factors regulating transmission dynamics.


Assuntos
Clima , Dengue/epidemiologia , Tempo (Meteorologia) , Dengue/transmissão , Dengue/virologia , Humanos , Incidência , Estudos Longitudinais , México , Porto Rico , Chuva , Temperatura , Tailândia
4.
PLoS Negl Trop Dis ; 3(2): e382, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19221592

RESUMO

The four dengue viruses, the agents of dengue fever and dengue hemorrhagic fever in humans, are transmitted predominantly by the mosquito Aedes aegypti. The abundance and the transmission potential of Ae. aegypti are influenced by temperature and precipitation. While there is strong biological evidence for these effects, empirical studies of the relationship between climate and dengue incidence in human populations are potentially confounded by seasonal covariation and spatial heterogeneity. Using 20 years of data and a statistical approach to control for seasonality, we show a positive and statistically significant association between monthly changes in temperature and precipitation and monthly changes in dengue transmission in Puerto Rico. We also found that the strength of this association varies spatially, that this variation is associated with differences in local climate, and that this relationship is consistent with laboratory studies of the impacts of these factors on vector survival and viral replication. These results suggest the importance of temperature and precipitation in the transmission of dengue viruses and suggest a reason for their spatial heterogeneity. Thus, while dengue transmission may have a general system, its manifestation on a local scale may differ from global expectations.


Assuntos
Vírus da Dengue/fisiologia , Dengue/epidemiologia , Dengue/transmissão , Aedes/virologia , Animais , Clima , Dengue/virologia , Humanos , Porto Rico/epidemiologia , Chuva , Temperatura
5.
Int J Health Geogr ; 7: 52, 2008 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-18842130

RESUMO

BACKGROUND: Climate may exert a strong influence on health, in particular on vector-borne infectious diseases whose vectors are intrinsically dependent on their environment. Although critical, linking climate variability to health outcomes is a difficult task. For some diseases in some areas, spatially and temporally explicit surveillance data are available, but comparable climate data usually are not. We utilize spatial models and limited weather observations in Puerto Rico to predict weather throughout the island on a scale compatible with the local dengue surveillance system. RESULTS: We predicted monthly mean maximum temperature, mean minimum temperature, and cumulative precipitation at a resolution of 1,000 meters. Average root mean squared error in cross-validation was 1.24 degrees C for maximum temperature, 1.69 degrees C for minimum temperature, and 62.2 millimeters for precipitation. CONCLUSION: We present a methodology for efficient extrapolation of minimal weather observation data to a more meaningful geographical scale. This analysis will feed downstream studies of climatic effects on dengue transmission in Puerto Rico. Additionally, we utilize conditional simulation so that model error may be robustly passed to future analyses.


Assuntos
Clima , Geografia , Modelos Teóricos , Dengue/transmissão , Humanos , Modelos Estatísticos , Porto Rico , Tempo (Meteorologia)
6.
J Am Mosq Control Assoc ; 23(2): 153-60, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17847847

RESUMO

As part of an ongoing mosquito surveillance program, 27 sites in the greater metropolitan Albuquerque area (Bernalillo County, New Mexico) were trapped from May through September 2004. Each site was sampled for 1 night weekly, using a standard CO2-baited Centers for Disease Control and Prevention light trap and a gravid trap. Captured mosquitoes were catalogued by location, species, and date, and selected pools were tested for West Nile virus (WNV) by reverse transcription-polymerase chain reaction. Based on previous surveillance, WNV was already established in the state of New Mexico. Surveillance during 2003, the 1st year of WNV detection in New Mexico mosquitoes, was focused on the bosque forest of the Rio Grande river valley. Surveillance during summer of 2004 was extended to additional areas around the city of Albuquerque, the state's largest population center. In addition to the standard surveillance objectives, a secondary goal was to determine whether foci of WNV activity were detectable in other habitats besides the riparian ecosystem of the Rio Grande, and in other species not previously identified as vectors. There was no demonstrable advantage to extending the traditional trapping area outside of the Rio Grande valley. Sites in the valley area had WNV-positive mosquitoes earlier in the season, and for a longer period than the added sites. In addition, riparian sites had the highest diversity of species, the largest numbers of Culex spp. captured, and the largest proportion of the WNV-positive mosquito pools from the study. Species found in other areas of the metropolitan area were also represented in the valley. Although WNV activity was detected in other areas of the city, its activity began later and ended earlier than in the river valley. We surmise that the greatest benefit to mosquito surveillance could be achieved by focusing on the river valley area.


Assuntos
Cidades , Culicidae/fisiologia , Culicidae/virologia , Ecossistema , Vírus do Nilo Ocidental/isolamento & purificação , Animais , New Mexico , Fatores de Tempo
7.
J Am Mosq Control Assoc ; 22(2): 246-53, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17019770

RESUMO

As part of the West Nile virus surveillance program for the state of New Mexico, 13 sites along the Rio Grande River were sampled for mosquitoes during spring and summer 2003. We evaluated 3 different trapping procedures for their effectiveness at capturing selected species of mosquitoes. The 3 methods used were a dry ice-baited Centers for Disease Control and Prevention (CDC) light trap set 1.5 m above the ground (standard method), a CDC light trap suspended within the forest canopy, and a gravid trap set on the ground. Thirteen sites were sampled for 10 1-night periods biweekly from May through September. The relative numbers of captured Culex tarsalis, Cx. salinarius, Cx. quinquefasciatus, and Aedes vexans as well as the numbers of total recorded captures of all species were compared for each trapping method. Significant differences were observed for each species by location and by trapping method. Culex tarsalis was most commonly caught in canopy or standard CDC traps, especially in cottonwood bosque. Culex salinarius was found most frequently in association with marshy water, and was most often caught in gravid or standard light traps. Culex quinquefasciatus was captured almost exclusively in gravid traps within urban areas. Aedes vexans was primarily sampled in standard CDC light traps and found most frequently in wooded areas near floodplains. With the exception of Cx. Quinquefasciatus, no species was collected significantly more frequently in gravid or canopy traps than in the standard CDC light trap. Our findings do not support altering the methods currently used in New Mexico, namely, the use of 1.5-m CDC light traps and gravid traps. An increased use of gravid traps seems to be warranted in monitoring urban vector populations (specifically Cx. quinquefasciatus and Cx. salinarius) that may be involved in human transmission.


Assuntos
Culicidae/virologia , Vírus do Nilo Ocidental , Aedes/virologia , Animais , Culex/virologia , Ecossistema , New Mexico , Vigilância da População
8.
J Med Entomol ; 43(3): 594-9, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16739421

RESUMO

The first appearances of West Nile virus (family Flaviviridae, genus Flavivirus, WNV) in New Mexico were reported in late summer to early fall 2002. Several dead birds tested positive for WNV, and 78 equine cases were confirmed. All mosquito pools tested (n = 268) were negative. A statewide surveillance program was launched in May 2003 to study the emergence and spread of this new arbovirus in mosquitoes from the Rio Grande valley. Mosquitoes were trapped at 32 sites along a 750-km stretch of the Rio Grande valley. Sites were trapped for one night either weekly or biweekly, by using CO2-baited CDC light traps and gravid traps. Pools of captured mosquitoes were tested for WNV by reverse transcription-polymerase chain reaction. By mid-July 2003, WNV levels in the mosquito population had reached levels that were detectable by the surveillance program. Positive pools of mosquitoes were found in the Rio Grande valley from mid-July through late September. In total, 75 positive pools were found, from sites throughout the study area. The predominant species infected with WNV in this region were Culex tarsalis (Coquillett) in rural areas, and Culex salinarius (Coquillett) and Culex pipiens quinquefasciatus (Say) in urban areas. There were 202 human cases and 438 equine cases of WNV in New Mexico in 2003, which corresponded well in time with the positive mosquitoes. Our results seemed to be consistent with introduction of WNV in late summer 2002, followed by a period of transmission and amplification cycles between local avian hosts and mosquito vectors.


Assuntos
Culex/virologia , Vírus do Nilo Ocidental/isolamento & purificação , Animais , Doenças dos Cavalos/epidemiologia , Cavalos , Humanos , Insetos Vetores , New Mexico/epidemiologia , Estações do Ano , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/transmissão , Febre do Nilo Ocidental/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA