Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Pathol ; 72: 107653, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38740356

RESUMO

By uncoupling oxidative phosphorylation, 2,4-dinitrophenol (DNP) attenuates reactive oxygen species (ROS) biosynthesis, which are known to aggravate infectious myocarditis in Chagas disease. Thus, the impact of DNP-based chemotherapy on Trypanosoma cruzi-induced acute myocarditis was investigated. C56BL/6 mice uninfected and infected untreated and treated daily with 100 mg/kg benznidazole (Bz, reference drug), 5 and 10 mg/kg DNP by gavage for 11 days after confirmation of T. cruzi infection were investigated. Twenty-four hours ​after the last treatment, the animals were euthanized and the heart was collected for microstructural, immunological and biochemical analyses. T. cruzi inoculation induced systemic inflammation (e.g., cytokines and anti-T. cruzi IgG upregulation), cardiac infection (T. cruzi DNA), oxidative stress, inflammatory infiltrate and microstructural myocardial damage in untreated mice. DNP treatment aggravated heart infection and microstructural damage, which were markedly attenuated by Bz. DNP (10 mg/kg) was also effective in attenuating ROS (total ROS, H2O2, and O2-), nitric oxide (NO), lipid (malondialdehyde - MDA) and protein (protein carbonyl - PCn) oxidation, TNF, IFN-γ, IL-10, and MCP-1/CCL2, anti-T. cruzi IgG, cardiac troponin I levels, as well as inflammatory infiltrate and cardiac damage in T. cruzi-infected mice. Our findings indicate that DNP aggravated heart infection and microstructural cardiomyocytes damage in infected mice. These responses were related to the antioxidant and anti-inflammatory properties of DNP, which favors infection by weakening the pro-oxidant and pro-inflammatory protective mechanisms of the infected host. Conversely, Bz-induced cardioprotective effects combined effective anti-inflammatory and antiparasitic responses, which protect against heart infection, oxidative stress, and microstructural damage in Chagas disease.


Assuntos
2,4-Dinitrofenol , Cardiomiopatia Chagásica , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Trypanosoma cruzi , Animais , 2,4-Dinitrofenol/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Cardiomiopatia Chagásica/tratamento farmacológico , Cardiomiopatia Chagásica/metabolismo , Cardiomiopatia Chagásica/parasitologia , Cardiomiopatia Chagásica/patologia , Trypanosoma cruzi/efeitos dos fármacos , Masculino , Espécies Reativas de Oxigênio/metabolismo , Desacopladores/farmacologia , Desacopladores/toxicidade , Camundongos , Miocárdio/patologia , Miocárdio/metabolismo , Nitroimidazóis/farmacologia , Doença Aguda , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Anti-Inflamatórios/farmacologia , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Miocardite/parasitologia , Miocardite/metabolismo , Miocardite/tratamento farmacológico , Miocardite/patologia , Miocardite/induzido quimicamente , Doença de Chagas/tratamento farmacológico , Doença de Chagas/metabolismo , Doença de Chagas/patologia , Doença de Chagas/parasitologia
2.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167264, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38806073

RESUMO

Phenothiazines inhibit antioxidant enzymes in trypanosomatids. However, potential interferences with host cell antioxidant defenses are central concerns in using these drugs to treat Trypanosoma cruzi-induced infectious myocarditis. Thus, the interaction of thioridazine (TDZ) with T. cruzi and cardiomyocytes antioxidant enzymes, and its impact on cardiomyocytes and cardiac infection was investigated in vitro and in vivo. Cardiomyocytes and trypomastigotes in culture, and mice treated with TDZ and benznidazole (Bz, reference antiparasitic drug) were submitted to microstructural, biochemical and molecular analyses. TDZ was more cytotoxic and less selective against T. cruzi than Bz in vitro. TDZ-pretreated cardiomyocytes developed increased infection rate, reactive oxygen species (ROS) production, lipid and protein oxidation; similar catalase (CAT) and superoxide dismutase (SOD) activity, and reduced glutathione's (peroxidase - GPx, S-transferase - GST, and reductase - GR) activity than infected untreated cells. TDZ attenuated trypanothione reductase activity in T. cruzi, and protein antioxidant capacity in cardiomyocytes, making these cells more susceptible to H2O2-based oxidative challenge. In vivo, TDZ potentiated heart parasitism, total ROS production, myocarditis, lipid and protein oxidation; as well as reduced GPx, GR, and GST activities compared to untreated mice. Benznidazole decreased heart parasitism, total ROS production, heart inflammation, lipid and protein oxidation in T. cruzi-infected mice. Our findings indicate that TDZ simultaneously interact with enzymatic antioxidant targets in cardiomyocytes and T. cruzi, potentiating the infection by inducing antioxidant fragility and increasing cardiomyocytes and heart susceptibility to parasitism, inflammation and oxidative damage.


Assuntos
Antioxidantes , Cardiomiopatia Chagásica , Miócitos Cardíacos , Espécies Reativas de Oxigênio , Tioridazina , Trypanosoma cruzi , Animais , Miócitos Cardíacos/parasitologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Trypanosoma cruzi/efeitos dos fármacos , Camundongos , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Tioridazina/farmacologia , Cardiomiopatia Chagásica/tratamento farmacológico , Cardiomiopatia Chagásica/parasitologia , Cardiomiopatia Chagásica/metabolismo , Cardiomiopatia Chagásica/patologia , Miocardite/parasitologia , Miocardite/tratamento farmacológico , Miocardite/metabolismo , Miocardite/patologia , Nitroimidazóis/farmacologia , Nitroimidazóis/uso terapêutico , Masculino , Tripanossomicidas/farmacologia , Superóxido Dismutase/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Doença de Chagas/metabolismo , Doença de Chagas/patologia , Catalase/metabolismo , Ratos , NADH NADPH Oxirredutases/metabolismo
3.
Int Immunopharmacol ; 128: 111467, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38211479

RESUMO

The adequate management of parasite co-infections represents a challenge that has not yet been overcome, especially considering that the pathological outcomes and responses to treatment are poorly understood. Thus, this study aimed to evaluate the impact of Schistosoma mansoni infection on the efficacy of benznidazole (BZN)-based chemotherapy in Trypanosoma cruzi co-infected mice. BALB/c mice were maintained uninfected or co-infected with S. mansoni and T. cruzi, and were untreated or treated with BZN. Body weight, mortality, parasitemia, cardiac parasitism, circulating cytokines (Th1/Th2/Th17); as well as heart, liver and intestine microstructure were analyzed. The parasitemia peak was five times higher and myocarditis was more severe in co-infected than T. cruzi-infected mice. After reaching peak, parasitemia was effectively controlled in co-infected animals. BZN successfully controlled parasitemia in both co-infected and T. cruzi-infected mice and improved body mass, cardiac parasitism, myocarditis and survival in co-infected mice. Co-infection dampened the typical cytokine response to either parasite, and BZN reduced anti-inflammatory cytokines in co-infected mice. Despite BZN normalizing splenomegaly and liver cellular infiltration, it exacerbated hepatomegaly in co-infected mice. Co-infection or BZN exerted no effect on hepatic granulomas, but increased pulmonary and intestinal granulomas. Marked granulomatous inflammation was identified in the small intestine of all schistosomiasis groups. Taken together, our findings indicate that BZN retains its therapeutic efficacy against T. cruzi infection even in the presence of S. mansoni co-infection, but with organ-specific repercussions, especially in the liver.


Assuntos
Doença de Chagas , Coinfecção , Miocardite , Nitroimidazóis , Esquistossomose mansoni , Camundongos , Animais , Miocardite/parasitologia , Schistosoma mansoni , Parasitemia/tratamento farmacológico , Doença de Chagas/tratamento farmacológico , Citocinas/uso terapêutico , Granuloma
4.
Life Sci ; 338: 122408, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38181852

RESUMO

Anabolic-androgenic steroids (AAS) abuse is often associated with metabolic disorders and infertility. However, the current evidence on AAS-induced reproductive toxicity is mainly based on male studies. Thus, AAS repercussions on female reproductive capacity remain poorly understood, despite scarce evidence that fertility determinants may be more severely impaired in females than males exposed to these drugs. Accordingly, this study used an integrated framework to investigate the impact of different testosterone 17ß-cyclopentylpropionate (TC) doses on pain sensitivity, aggressiveness, anxiety, sexual behavior, ovarian, oviductal, uterine and reproductive morphofunctional and molecular outcomes. These parameters were used to explore the reproductive capacity in female mice exposed to this synthetic testosterone ester. The animals were untreated or intraperitoneally treated with 5, 10 and 20 mg/kg TC every 48 h for 12 weeks. Our findings indicated that testosterone was upregulated while the hormones luteinizing, follicle-stimulating, estrogen and progesterone were down-regulated by TC. This AAS also exerted deleterious effects on anxiety, aggressivity, nociception, exploratory and sexual behavior in female mice. Concurrently, TC attenuated ovarian follicle maturation, interrupted the estrous cycle, induced oviductal and uterine hypotrophy. Estrous cyclicity was reestablished 60 days after AAS treatment. However, TC-treated mice still exhibited impaired reproductive capacity, a disturbance potentially related to deficiency in folliculogenesis, sex hormones production, and endometrial receptivity mediate by ER-α, PR, HOXA-10 and LIF down-regulation. Taken together, our findings indicated that in addition to female behavior, reproductive organs microstructure and function are markedly impaired by TC in a dose-dependent manner, whose time-dependent reversibility remains to be clarified.


Assuntos
Anabolizantes , Masculino , Feminino , Camundongos , Animais , Anabolizantes/farmacologia , Testosterona/farmacologia , Congêneres da Testosterona , Reprodução , Progesterona/farmacologia
5.
Int Immunopharmacol ; 127: 111353, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38086267

RESUMO

Schistosomiasis mansoni is a parasitic infection that causes enterohepatic morbidity associated with severe granulomatous inflammation triggered by parasite eggs. In this disease, granulomatous inflammation leads to intestinal erosion and environmental excretion of S. mansoni eggs from feces, an essential process for propagating the parasite and infecting host organisms. Metalloproteinases (MMP) are involved in S. mansoni-induced hepatic granulomatous inflammation and fibrosis. However, the relationship between MMP and collagen accumulation with the intestinal excretion of parasite eggs remains unclear. Thus, the present study investigated whether MMP inhibition is capable of modulating granulomatous inflammation, collagen accumulation and mechanical resistance to the point of influencing the dynamics between intestinal retention and excretion of S. mansoni eggs in infected mice. Our findings indicated that doxycycline (a potent MMP inhibitor) aggravates intestinal inflammation and subverts collagen dynamics in schistosomiasis. By attenuating MMP-2 and MMP-9 activity, this drug is capable of enhancing fibrosis and mechanical resistance of the intestinal wall, hindering S. mansoni eggs translocation. Although collagen content was not correlated with MMP activity, intestinal retention and fecal excretion of parasite eggs in untreated mice; these correlations were observed for doxycycline-treated animals. Thus, our study provides evidence that doxycycline is able to attenuate fecal elimination of S. mansoni eggs by inhibiting MMP-2 and MMP-9 activity, events potentially associated with excessive collagen accumulation, which increases intestinal mechanical resistance and hinders eggs translocation through the intestinal wall. Variations in intestinal collagen dynamics are relevant since they may represent changes in the environmental dispersion of S. mansoni eggs, bringing repercussions for schistosomiasis propagation.


Assuntos
Schistosoma mansoni , Esquistossomose , Animais , Camundongos , Metaloproteinase 2 da Matriz , Metaloproteinase 9 da Matriz , Doxiciclina/farmacologia , Doxiciclina/uso terapêutico , Inflamação/parasitologia , Fibrose , Colágeno
6.
Int Immunopharmacol ; 121: 110416, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37295025

RESUMO

AIMS: From well-delimited immunomodulatory, redox and antimicrobial properties; metronidazole and eugenol were used as structural platforms to assembly two new molecular hybrids (AD06 and AD07), whose therapeutic relevance was analyzed on T. cruzi infection in vitro and in vivo. METHODS: Non-infected, T. cruzi-infected H9c2 cardiomyocytes, and mice non-treated and treated with vehicle, benznidazole (Bz - reference drug), AD06 and AD07 were investigated. Parasitological, prooxidant, antioxidant, microstructural, immunological, and hepatic function markers were analyzed. RESULTS: Our findings indicated that in addition to having a direct antiparasitic effect on T. cruzi, metronidazole/eugenol hybrids (especially AD07) attenuated cellular parasitism, reactive species biosynthesis and oxidative stress in infected cardiomyocytes in vitro. Although AD06 and AD07 exerted no relevant impact on antioxidant enzymes activity (CAT, SOD, GR and GPx) in host cells, these drugs (especially AD07) attenuated trypanothione reductase activity in T. cruzi, which increased parasite's susceptibility to in vitro pro-oxidant challenge. AD06 and AD07 were well tolerated and do not determine humoral response suppression, mortality (100 % survival) or hepatotoxicity in mice, as indicated by transaminases plasma levels. AD07 also induced relevant in vivo antiparasitic and cardioprotective effects, attenuating parasitemia, cardiac parasite load and myocarditis in T. cruzi-infected mice. Although this cardioprotective response is potentially related to AD07 antiparasitic effect, a direct anti-inflammatory potential of this molecular hybrid cannot be ruled out. CONCLUSION: Taken together, our findings indicated that the new molecular hybrid AD07 stood out as a potentially relevant candidate for the development of new, safe and more effective drug regimens for T. cruzi infection treatment.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Camundongos , Animais , Metronidazol/farmacologia , Metronidazol/uso terapêutico , Eugenol/farmacologia , Antioxidantes/farmacologia , Doença de Chagas/tratamento farmacológico , Miócitos Cardíacos , Antiparasitários/farmacologia
7.
Acta Trop ; 228: 106314, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35038424

RESUMO

The anti-inflammatory and cardioprotective potential of coumarin metabolites in infectious myocarditis remains overlooked. Thus, the impact of the synthetic 4-nitrobenzoylcoumarin (4NB) alone and combined with benznidazole (Bz) in a murine model of Trypanosoma cruzi-induced acute myocarditis was investigated. Swiss mice infected with T. cruzi were randomized in 8 groups: uninfected, infected untreated or treated with 50 and 100 mg/kg 4NB or Bz alone and combined. Treatments were administered by gavage for 20 days. Cytokines (IL-2, IL-6, IL-10, IL-17, TNFα, and IFN-γ), immunoglobulin reactivity index (total IgG, IgG1, IgG2a and IgG2b), atrial natriuretic peptide (ANP), parasitemia, serum transaminases, heart and liver cellularity were analyzed. T. cruzi infection induced blood parasitism, heart and liver inflammation, upregulated all cytokines, IgG reactivity index, ANP and transaminase levels, determining 43% mortality in untreated mice. Transaminase levels, mean parasitemia, heart inflammation and ANP were reduced in 4NB-treated mice, reaching a 100% survival rate. Total survival (100%) was also obtained in all combinations of Bz and 4NB, which were effective in reducing blood parasitism, transaminases, cytokines and ANP levels, IgG reactivity index, liver and heart interstitial cellularity compared to 50 mg/kg Bz. Our findings indicated that 4NB alone and combined with Bz was well tolerated, showing no evidence of hepatotoxicity. Mainly in combination, these drugs exerted protective effects against T. cruzi-induced acute myocarditis by attenuating blood parasitism, systemic and heart inflammation. Thus, combinations based on 4NB and Bz are potentially relevant to develop new and more effective drug regimens for the treatment of T. cruzi-induced myocarditis.


Assuntos
Doença de Chagas , Nitroimidazóis , Tripanossomicidas , Trypanosoma cruzi , Animais , Anti-Inflamatórios/uso terapêutico , Antiparasitários/uso terapêutico , Doença de Chagas/parasitologia , Modelos Animais de Doenças , Camundongos , Nitroimidazóis/farmacologia , Nitroimidazóis/uso terapêutico , Parasitemia/tratamento farmacológico , Parasitemia/parasitologia , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico
8.
Biomed J ; 45(6): 857-869, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34971826

RESUMO

BACKGROUND: We investigated the relationship between inducible nitric oxide synthase (iNOS) and arginase pathways, cytokines, macrophages, oxidative damage and lung granulomatous inflammation in S. mansoni-infected and doxycycline-treated mice. METHODS: Swiss mice were randomized in four groups: (i) uninfected, (ii) infected with S. mansoni, (iii) infected + 200 mg/kg praziquantel (Pzt), (iv) and (v) infected + 5 and 50 mg/kg doxycycline. Pzt (reference drug) was administered in a single dose and doxycycline for 60 days. RESULTS: S. mansoni-infection determined extensive lung inflammation, marked recruitment of M2 macrophages, cytokines (IL-4, IL-5, IFN-γ, TNF-α) upregulation, intense eosinophil peroxidase (EPO) levels, arginase expression and activity, reduced iNOS expression and nitric oxide (NO) production. The higher dose of doxycycline aggravated lung granulomatous inflammation, downregulating IL-4 levels and M2 macrophages recruitment, and upregulating iNOS expression, EPO, NO, IFN-γ, TNF-α, M1 macrophages, protein carbonyl and malondialdehyde tissue levels. The number and size of granulomas in doxycycline-treated animals was higher than untreated and Pzt-treated mice. Exudative/productive granulomas were predominant in untreated and doxycycline-treated animals, while fibrotic/involutive granulomas were more frequent in Pzt-treated mice. The reference treatment with Pzt attenuated all these parameters. CONCLUSION: Our findings indicated that doxycycline aggravated lung granulomatous inflammation in a dose-dependent way. Although Th1 effectors are protective against several intracellular pathogens, effective schistosomicidal responses are dependent of the Th2 phenotype. Thus, doxycycline contributes to the worsening of lung granulomatous inflammation by potentiating eosinophils influx and downregulating Th2 effectors, reinforcing lipid and protein oxidative damage in chronic S. mansoni infection.


Assuntos
Doxiciclina , Esquistossomose , Camundongos , Animais , Óxido Nítrico Sintase Tipo II/metabolismo , Doxiciclina/farmacologia , Arginase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-4/metabolismo , Citocinas/metabolismo , Pulmão , Estresse Oxidativo , Inflamação/tratamento farmacológico , Granuloma , Óxido Nítrico/metabolismo
9.
Exp Gerontol ; 159: 111676, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34968674

RESUMO

Considering the efficacy of rapamycin in increasing lifespan and healthspan, attenuating the aging-dependent immunological decline, we compared the evolution of Trypanosoma cruzi infection and acute myocarditis in young and elderly mice untreated and chronically treated with this drug. Five groups were investigated: young uninfected and infected, elderly uninfected and infected with Trypanosoma cruzi untreated and treated with rapamycin (4 mg/kg every 3 days) from the 8th to the 96th week of age. Seven days after the last treatment, elderly mice were inoculated with T. cruzi. Young animals were infected at 8-weeks-old. Untreated elderly mice exhibited increase parasitemia, parasite load and myocarditis, which were associated to down-regulation in IL-2, IL-6, IFN-γ, TNF, anti-T. cruzi immunoglobulin G (IgG) total, IgG1 and IgG2a plasma levels, inducible nitric oxide synthase (iNOS) gene expression and nitric oxide (NO) cardiac production, as well as upregulation in Arginase-1 gene expression and arginase activity compared to young animals. These parameters were improved in rapamycin-pretreated elderly mice, which exhibited a better parasitological control, reduced heart inflammation and microstructural damage. These responses were associated with a better balance between Th1 and Th2 effectors similar to that observed in young animals, including an improved activation of Th1 cytokines and the iNOS pathway that positively regulates NO biosynthesis, contradicting the predominant activation of the arginase pathway in untreated elderly animals. Thus, our findings suggest that chronic pretreatment with rapamycin can attenuate immunosenescence in mice, contributing to prolong parasite resistance and attenuate acute myocarditis in elderly host challenged by T. cruzi.


Assuntos
Doença de Chagas , Miocardite , Trypanosoma cruzi , Envelhecimento , Animais , Arginase/metabolismo , Doença de Chagas/tratamento farmacológico , Camundongos , Miocardite/tratamento farmacológico , Miocardite/parasitologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Sirolimo/farmacologia , Trypanosoma cruzi/metabolismo
10.
Oxid Med Cell Longev ; 2021: 4681041, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33959214

RESUMO

The main objective of this study was to investigate the action of doxycycline hyclate (Dx) in the skin wound healing process in Wistar rats. We investigated the effect of Dx on inflammatory cell recruitment and production of inflammatory mediators via in vitro and in vivo analysis. In addition, we analyzed neovascularization, extracellular matrix deposition, and antioxidant potential of Dx on cutaneous repair in Wistar rats. Male animals (n = 15) were divided into three groups with five animals each (protocol: 72/2017), and three skin wounds (12 mm diameter) were created on the back of the animals. The groups were as follows: C, received distilled water (control); Dx1, doxycycline hyclate (10 mg/kg/day); and Dx2, doxycycline hyclate (30 mg/kg/day). The applications were carried out daily for up to 21 days, and tissues from different wounds were removed every 7 days. Our in vitro analysis demonstrated that Dx led to macrophage proliferation and increased N-acetyl-ß-D-glucosaminidase (NAG) production, besides decreased cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), and metalloproteinases (MMP), which indicates that macrophage activation and COX-2 inhibition are possibly regulated by independent mechanisms. In vivo, our findings presented increased cellularity, blood vessels, and the number of mast cells. However, downregulation was observed in the COX-2 and PGE2 expression, which was limited to epidermal cells. Our results also showed that the downregulation of this pathway benefits the oxidative balance by reducing protein carbonyls, malondialdehyde, nitric oxide, and hydrogen peroxide (H2O2). In addition, there was an increase in the antioxidant enzymes (catalase and superoxide dismutase) after Dx exposure, which demonstrates its antioxidant potential. Finally, Dx increased the number of types I collagen and elastic fibers and reduced the levels of MMP, thus accelerating the closure of skin wounds. Our findings indicated that both doses of Dx can modulate the skin repair process, but the best effects were observed after exposure to the highest dose.


Assuntos
Antibacterianos , Antioxidantes , Ciclo-Oxigenase 2 , Doxiciclina , Metaloproteinases da Matriz , Cicatrização , Animais , Masculino , Ratos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Ciclo-Oxigenase 2/metabolismo , Doxiciclina/farmacologia , Doxiciclina/uso terapêutico , Metaloproteinases da Matriz/metabolismo , Ratos Wistar , Cicatrização/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA