Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Chem X ; 18: 100744, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37397223

RESUMO

This paper introduces a method for determining the authenticity of commercial cereal bars based on trace element fingerprints. In this regard, 120 cereal bars were prepared using microwave-assisted acid digestion and the concentrations of Al, Ba, Bi, Cd, Co, Cr, Cu, Fe, Li, Mn, Mo, Ni, Pb, Rb, Se, Sn, Sr, V, and Zn were later measured by ICP-MS. Results confirmed the suitability of the analyzed samples for human consumption. Multielemental data underwent autoscaling preprocessing for then applying PCA, CART, and LDA to input data set. LDA model accomplished the highest classification modeling performance with a success rate of 92%, making it the suitable model for reliable cereal bar prediction. The proposed method demonstrates the potential of trace element fingerprints in distinguishing cereal bar samples according to their type (conventional and gluten-free) and principal ingredient (fruit, yogurt, chocolate), thereby contributing to global efforts for food authentication.

2.
Nanomaterials (Basel) ; 13(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37177048

RESUMO

With the growing population, access to clean water is one of the 21st-century world's challenges. For this reason, different strategies to reduce pollutants in water using renewable energy sources should be exploited. Photocatalysts with extended visible light harvesting are an interesting route to degrade harmful molecules utilized in plastics, as is the case of Bisphenol A (BPA). This work uses a microwave-assisted route for the synthesis of two photocatalysts (BiOI and Bi2MoO6). Then, BiOI/Bi2MoO6 heterostructures of varied ratios were produced using the same synthetic routes. The BiOI/Bi2MoO6 with a flower-like shape exhibited high photocatalytic activity for BPA degradation compared to the individual BiOI and Bi2MoO6. The high photocatalytic activity was attributed to the matching electronic band structures and the interfacial contact between BiOI and Bi2MoO6, which could enhance the separation of photo-generated charges. Electrochemical, optical, structural, and chemical characterization demonstrated that it forms a BiOI/Bi2MoO6 p-n heterojunction. The free radical scavenging studies showed that superoxide radicals (O2•-) and holes (h+) were the main reactive species, while hydroxyl radical (•OH) generation was negligible during the photocatalytic degradation of BPA. The results can potentiate the application of the microwave synthesis of photocatalytic materials.

3.
Foods ; 12(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36673459

RESUMO

Rice is an important source of nutrition and energy consumed around the world. Thus, quality inspection is crucial for protecting consumers and increasing the rice's value in the productive chain. Currently, methods for rice labeling depending on grain quality features are based on image and/or visual inspection. These methods have shown subjectivity and inefficiency for large-scale analyses. Laser-induced breakdown spectroscopy (LIBS) is an analytical technique showing attractive features due to how quick the analysis can be carried out and its capability of providing spectra that are true fingerprints of the sample's elemental composition. In this work, LIBS performance was evaluated for labeling rice according to grain quality features. The LIBS spectra of samples with their grain quality numerically described as Type 1, 2, and 3 were measured. Several spectral processing methods were evaluated when modeling a k-nearest neighbors (k-NN) classifier. Variable selection was also carried out by principal component analysis (PCA), and then the optimal k-value was selected. The best result was obtained by applying spectrum smoothing followed by normalization by using the first fifteen principal components (PCs) as input variables and k = 9. Under these conditions, the method showed excellent performance, achieving sample classification with 94% overall prediction accuracy. The sensitivities ranged from 90 to 100%, and specificities were in the range of 92-100%. The proposed method has remarkable characteristics, e.g., analytical speed and analysis guided by chemical responses; therefore, the method is not susceptible to subjectivity errors.

4.
Toxics ; 9(2)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670617

RESUMO

In this work, the particulate matter (PM) from three different monitoring stations in the Monterrey Metropolitan Area in Mexico were investigated for their compositional, morphological, and optical properties. The main aim of the research was to decipher the different sources of the particles. The methodology involved the ex situ sequential analysis of individual particles by three analytical techniques: scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), polarized light microscopy (PLM), and micro-Raman spectroscopy (MRS). The microanalysis was performed on samples of total suspended particles. Different morphologies were observed for particles rich in the same element, including prismatic, spherical, spheroidal, and irregular morphologies. The sequential microanalysis by SEM-EDS/PLM/MRS revealed that Fe-rich particles with spherical and irregular morphologies were derived from anthopogenic sources, such as emissions from the metallurgical industry and the wear of automobile parts, respectively. In contrast, Fe-rich particles with prismatic morphologies were associated with natural sources. In relation to carbon (C), the methodology was able to distinguish between the C-rich particles that came from different anthopogenic sources-such as the burning of fossil fuels, biomass, or charcoal-and the metallurgical industry. The optical properties of the Si-rich particles depended, to a greater extent, on their chemical composition than on their morphology, which made it possible to quickly and accurately differentiate aluminosilicates from quartz. The methodology demonstrated in this study was useful for performing the speciation of the particles rich in different elements. This differentiation helped to assign their possible emission sources.

5.
Nanomaterials (Basel) ; 10(11)2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33172181

RESUMO

Pyrolysis is a feasible solution for environmental problems related to the inadequate disposal of waste tires, as it leads to the recovery of pyrolytic products such as carbon black, liquid fuels and gases. The characteristics of pyrolytic carbon black can be enhanced through chemical activation in order to produce the required properties for its application. In the search to make the waste tire pyrolysis process profitable, new applications of the pyrolytic solid products have been explored, such as for the fabrication of energy-storage devices and precursor in the synthesis of nanomaterials. In this study, waste tires powder was chemically activated using acid (H2SO4) and/or alkali (KOH) to recover pyrolytic carbon black with different characteristics. H2SO4 removed surface impurities more thoroughly, improving the carbon black's surface area, while KOH increased its oxygen content, which improved the carbon black's stability in water suspension. Pyrolytic carbon black was fully characterized by elemental analysis, inductively coupled plasma-optical emission spectrometry (ICP-OES), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD), N2 adsorption/desorption, scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS), dynamic light scattering (DLS), and ζ potential measurement. In addition, the pyrolytic carbon black was used to explore its feasibility as a precursor for the synthesis of carbon dots; synthesized carbon dots were analyzed preliminarily by SEM and with a fluorescence microplate reader, revealing differences in their morphology and fluorescence intensity. The results presented in this study demonstrate the effect of the activating agent on pyrolytic carbon black from waste tires and provide evidence of the feasibility of using waste tires for the synthesis of nanomaterials such as carbon dots.

6.
Arch Environ Contam Toxicol ; 78(3): 377-391, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32025753

RESUMO

In this work, the content of polycyclic aromatic hydrocarbons (PAHs) in total suspended particles and particulate matter with an aerodynamic diameter ≤ 2.5 µm (PM2.5) was analyzed using gas chromatography-mass spectrometry. In addition, a sequential chemical analysis of C-rich particles was performed through the parallel coupling of micro-Raman spectroscopy and scanning electron microscopy with X-ray scattering detection. Samples were collected at four sites in the Monterrey metropolitan area, Mexico. A total of 13 PAHs were quantified; indeno(1,2,3-cd)pyrene, chrysene, and benzo(a)anthracene were the most abundant. The total PAH concentrations at the four sampling sites ranged from 1.34 to 8.76 µg/m3. The diagnostic relation of the PAHs indicates that these compounds were emitted by the burning of gasoline and diesel and by the burning of charcoal and biomass. The sequential analysis correlated the morphology and the elemental/molecular composition of the C-rich particles, associated with the PAHs, with their possible emission sources. The estimated lifetime excess cancer risk for inhalation was higher than that established by the World Health Organization, which clearly makes this a potential health risk for the population.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Neoplasias/epidemiologia , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Cromatografia Gasosa-Espectrometria de Massas , Humanos , México , Medição de Risco
7.
Recent Pat Nanotechnol ; 13(1): 59-69, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30799803

RESUMO

BACKGROUND: Synthesis and applications of Ag-coated carbon nanotubes are currently under intensive research, resulting in a series of recent patents. Silver nanoparticles are normally obtained from silver nitrate. However, there are also other silver-containing compounds that can facilitate the production of silver nanoparticles, such as silver(I) acetate and silver(II) oxide. Being combined with carbon nanotubes, silver nanoparticles can transfer to them some of their useful properties, such as conductivity and antibacterial properties, and contribute to improving their dispersion in solvents. OBJECTIVE: To apply three different silver-containing precursors of Ag nanoparticles for the decoration of carbon nanotubes and study the morphology of formed composites by several methods. METHOD: Three different silver compounds were used as Ag source to carry out the functionalization and decoration of carbon nanotubes under ultrasonic treatment of the reaction system, containing, commercial carbon nanotubes, organic peroxides as oxidants or hydrazine as a reductant, and a surfactant. Resulting samples were analyzed by XRD and XPS spectroscopy, as well as TEM and SEM microscopy to study the morphology of formed nanocomposites. RESULTS: Silver nanoparticles can be produced without the presence of a reducing agent. Applying hydrazine, as a reducing agent, it is possible to obtain functionalized carbon nanotubes doped with silver nanoparticles, in which their sizes are smaller (1-5 nm) compared to those obtained without using hydrazine. CONCLUSION: Silver nanoparticles having a size range between 2-60 nm can be produced without the presence of a reducing agent. The use of a reducing agent, such as hydrazine, affects the size of silver nanoparticles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA