Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biophys Rev ; 15(4): 787-799, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37681096

RESUMO

Metamorphic proteins are a paradigm of the protein folding process, by encoding two or more native states, highly dissimilar in terms of their secondary, tertiary, and even quaternary structure, on a single amino acid sequence. Moreover, these proteins structurally interconvert between these native states in a reversible manner at biologically relevant timescales as a result of different environmental cues. The large-scale rearrangements experienced by these proteins, and their sometimes high mass interacting partners that trigger their metamorphosis, makes the computational and experimental study of their structural interconversion challenging. Here, we present our efforts in studying the refolding landscapes of two quintessential metamorphic proteins, RfaH and KaiB, using simplified dual-basin structure-based models (SBMs), rigorously footed on the energy landscape theory of protein folding and the principle of minimal frustration. By using coarse-grained models in which the native contacts and bonded interactions extracted from the available experimental structures of the two native states of RfaH and KaiB are merged into a single Hamiltonian, dual-basin SBM models can be generated and savvily calibrated to explore their fold-switch in a reversible manner in molecular dynamics simulations. We also describe how some of the insights offered by these simulations have driven the design of experiments and the validation of the conformational ensembles and refolding routes observed using this simple and computationally efficient models.

2.
iScience ; 26(7): 107228, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37485372

RESUMO

Transcription factors regulate gene expression by binding to DNA. They have disordered regions and specific DNA-binding domains. Binding to DNA causes structural changes, including folding and interactions with other molecules. The FoxP subfamily of transcription factors in humans is unique because they can form heterotypic interactions without DNA. However, it is unclear how they form heterodimers and how DNA binding affects their function. We used computational and experimental methods to study the structural changes in FoxP1's DNA-binding domain when it forms a heterodimer with FoxP2. We found that FoxP1 has complex and diverse conformational dynamics, transitioning between compact and extended states. Surprisingly, DNA binding increases the flexibility of FoxP1, contrary to the typical folding-upon-binding mechanism. In addition, we observed a 3-fold increase in the rate of heterodimerization after FoxP1 binds to DNA. These findings emphasize the importance of structural flexibility in promoting heterodimerization to form transcriptional complexes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA