Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 12: 591587, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33664755

RESUMO

Plant height (PH) is an essential trait in the screening of most crops. While in crops such as wheat, medium stature helps reduce lodging, tall plants are preferred to increase total above-ground biomass. PH is an easy trait to measure manually, although it can be labor-intense depending on the number of plots. There is an increasing demand for alternative approaches to estimate PH in a higher throughput mode. Crop surface models (CSMs) derived from dense point clouds generated via aerial imagery could be used to estimate PH. This study evaluates PH estimation at different phenological stages using plot-level information from aerial imaging-derived 3D CSM in wheat inbred lines during two consecutive years. Multi-temporal and high spatial resolution images were collected by fixed-wing (P l a t F W ) and multi-rotor (P l a t M R ) unmanned aerial vehicle (UAV) platforms over two wheat populations (50 and 150 lines). The PH was measured and compared at four growth stages (GS) using ground-truth measurements (PHground) and UAV-based estimates (PHaerial). The CSMs generated from the aerial imagery were validated using ground control points (GCPs) as fixed reference targets at different heights. The results show that PH estimations using P l a t F W were consistent with those obtained from P l a t M R , showing some slight differences due to image processing settings. The GCPs heights derived from CSM showed a high correlation and low error compared to their actual heights (R 2 ≥ 0.90, RMSE ≤ 4 cm). The coefficient of determination (R 2) between PHground and PHaerial at different GS ranged from 0.35 to 0.88, and the root mean square error (RMSE) from 0.39 to 4.02 cm for both platforms. In general, similar and higher heritability was obtained using PHaerial across different GS and years and ranged according to the variability, and environmental error of the PHground observed (0.06-0.97). Finally, we also observed high Spearman rank correlations (0.47-0.91) and R 2 (0.63-0.95) of PHaerial adjusted and predicted values against PHground values. This study provides an example of the use of UAV-based high-resolution RGB imagery to obtain time-series estimates of PH, scalable to tens-of-thousands of plots, and thus suitable to be applied in plant wheat breeding trials.

2.
PLoS One ; 14(3): e0212200, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30893307

RESUMO

High throughput phenotyping technologies are lagging behind modern marker technology impairing the use of secondary traits to increase genetic gains in plant breeding. We aimed to assess whether the combined use of hyperspectral data with modern marker technology could be used to improve across location pre-harvest yield predictions using different statistical models. A maize bi-parental doubled haploid (DH) population derived from F1, which consisted of 97 lines was evaluated in testcross combination under heat stress as well as combined heat and drought stress during the 2014 and 2016 summer season in Ciudad Obregon, Sonora, Mexico (27°20" N, 109°54" W, 38 m asl). Full hyperspectral data, indicative of crop physiological processes at the canopy level, was repeatedly measured throughout the grain filling period and related to grain yield. Partial least squares regression (PLSR), random forest (RF), ridge regression (RR) and Bayesian ridge regression (BayesB) were used to assess prediction accuracies on grain yield within (two-fold cross-validation) and across environments (leave-one-environment-out-cross-validation) using molecular markers (M), hyperspectral data (H) and the combination of both (HM). Highest prediction accuracy for grain yield averaged across within and across location predictions (rGP) were obtained for BayesB followed by RR, RF and PLSR. The combined use of hyperspectral and molecular marker data as input factor on average had higher predictions for grain yield than hyperspectral data or molecular marker data alone. The highest prediction accuracy for grain yield across environments was measured for BayesB when molecular marker data and hyperspectral data were used as input factors, while the highest within environment prediction was obtained when BayesB was used in combination with hyperspectral data. It is discussed how the combined use of hyperspectral data with molecular marker technology could be used to introduce physiological genomic estimated breeding values (PGEBV) as a pre-harvest decision support tool to select genetically superior lines.


Assuntos
Agricultura/métodos , Resposta ao Choque Térmico/genética , Zea mays/genética , Teorema de Bayes , Biomarcadores , Secas , Grão Comestível/genética , Previsões/métodos , Genoma de Planta/genética , Genômica , Genótipo , Temperatura Alta , México , Modelos Genéticos , Fenótipo , Melhoramento Vegetal/métodos , Tolerância ao Sal/genética , Seleção Genética/genética
3.
G3 (Bethesda) ; 9(4): 1231-1247, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30796086

RESUMO

Hyperspectral reflectance phenotyping and genomic selection are two emerging technologies that have the potential to increase plant breeding efficiency by improving prediction accuracy for grain yield. Hyperspectral cameras quantify canopy reflectance across a wide range of wavelengths that are associated with numerous biophysical and biochemical processes in plants. Genomic selection models utilize genome-wide marker or pedigree information to predict the genetic values of breeding lines. In this study, we propose a multi-kernel GBLUP approach to genomic selection that uses genomic marker-, pedigree-, and hyperspectral reflectance-derived relationship matrices to model the genetic main effects and genotype × environment (G × E) interactions across environments within a bread wheat (Triticum aestivum L.) breeding program. We utilized an airplane equipped with a hyperspectral camera to phenotype five differentially managed treatments of the yield trials conducted by the Bread Wheat Improvement Program of the International Maize and Wheat Improvement Center (CIMMYT) at Ciudad Obregón, México over four breeding cycles. We observed that single-kernel models using hyperspectral reflectance-derived relationship matrices performed similarly or superior to marker- and pedigree-based genomic selection models when predicting within and across environments. Multi-kernel models combining marker/pedigree information with hyperspectral reflectance phentoypes had the highest prediction accuracies; however, improvements in accuracy over marker- and pedigree-based models were marginal when correcting for days to heading. Our results demonstrate the potential of using hyperspectral imaging to predict grain yield within a multi-environment context and also support further studies on the integration of hyperspectral reflectance phenotyping into breeding programs.


Assuntos
Melhoramento Vegetal/métodos , Triticum/genética , Interação Gene-Ambiente , Marcadores Genéticos , Genoma de Planta , Genótipo , México , Fenótipo , Seleção Genética , Triticum/crescimento & desenvolvimento
4.
Theor Appl Genet ; 132(1): 177-194, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30341493

RESUMO

Genomic selection and high-throughput phenotyping (HTP) are promising tools to accelerate breeding gains for high-yielding and climate-resilient wheat varieties. Hence, our objective was to evaluate them for predicting grain yield (GY) in drought-stressed (DS) and late-sown heat-stressed (HS) environments of the International maize and wheat improvement center's elite yield trial nurseries. We observed that the average genomic prediction accuracies using fivefold cross-validations were 0.50 and 0.51 in the DS and HS environments, respectively. However, when a different nursery/year was used to predict another nursery/year, the average genomic prediction accuracies in the DS and HS environments decreased to 0.18 and 0.23, respectively. While genomic predictions clearly outperformed pedigree-based predictions across nurseries, they were similar to pedigree-based predictions within nurseries due to small family sizes. In populations with some full-sibs in the training population, the genomic and pedigree-based prediction accuracies were on average 0.27 and 0.35 higher than the accuracies in populations with only one progeny per cross, indicating the importance of genetic relatedness between the training and validation populations for good predictions. We also evaluated the item-based collaborative filtering approach for multivariate prediction of GY using the green normalized difference vegetation index from HTP. This approach proved to be the best strategy for across-nursery predictions, with average accuracies of 0.56 and 0.62 in the DS and HS environments, respectively. We conclude that GY is a challenging trait for across-year predictions, but GS and HTP can be integrated in increasing the size of populations screened and evaluating unphenotyped large nurseries for stress-resilience within years.


Assuntos
Clima , Modelos Genéticos , Melhoramento Vegetal/métodos , Triticum/genética , Grão Comestível/genética , Genoma de Planta , Genômica , Genótipo , Ensaios de Triagem em Larga Escala , Modelos Lineares , Linhagem , Fenótipo , Característica Quantitativa Herdável
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA