Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 12(3)2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35100386

RESUMO

Generations of farmer selection in the central Mexican highlands have produced unique maize varieties adapted to the challenges of the local environment. In addition to possessing great agronomic and cultural value, Mexican highland maize represents a good system for the study of local adaptation and acquisition of adaptive phenotypes under cultivation. In this study, we characterize a recombinant inbred line population derived from the B73 reference line and the Mexican highland maize variety Palomero Toluqueño. B73 and Palomero Toluqueño showed classic rank-changing differences in performance between lowland and highland field sites, indicative of local adaptation. Quantitative trait mapping identified genomic regions linked to effects on yield components that were conditionally expressed depending on the environment. For the principal genomic regions associated with ear weight and total kernel number, the Palomero Toluqueño allele conferred an advantage specifically in the highland site, consistent with local adaptation. We identified Palomero Toluqueño alleles associated with expression of characteristic highland traits, including reduced tassel branching, increased sheath pigmentation and the presence of sheath macrohairs. The oligogenic architecture of these three morphological traits supports their role in adaptation, suggesting they have arisen from consistent directional selection acting at distinct points across the genome. We discuss these results in the context of the origin of phenotypic novelty during selection, commenting on the role of de novo mutation and the acquisition of adaptive variation by gene flow from endemic wild relatives.


Assuntos
Adaptação Fisiológica , Zea mays , Aclimatação , Adaptação Fisiológica/genética , Genômica , Fenótipo , Zea mays/genética , Zea mays/metabolismo
2.
PeerJ ; 7: e6815, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31110920

RESUMO

BACKGROUND: The spread of maize cultivation to the highlands of central Mexico was accompanied by substantial introgression from the endemic wild teosinte Zea mays ssp. mexicana, prompting the hypothesis that the transfer of beneficial variation facilitated local adaptation. METHODS: We used whole-genome sequence data to map regions of Zea mays ssp. mexicana introgression in three Mexican highland maize individuals. We generated a genetic linkage map and performed Quantitative Trait Locus mapping in an F2 population derived from a cross between lowland and highland maize individuals. RESULTS: Introgression regions ranged in size from several hundred base pairs to Megabase-scale events. Gene density within introgression regions was comparable to the genome as a whole, and over 1,000 annotated genes were located within introgression events. Quantitative Trait Locus mapping identified a small number of loci linked to traits characteristic of Mexican highland maize. DISCUSSION: Although there was no strong evidence to associate quantitative trait loci with regions of introgression, we nonetheless identified many Mexican highland alleles of introgressed origin that carry potentially functional sequence variants. The impact of introgression on stress tolerance and yield in the highland environment remains to be fully characterized.

3.
PeerJ ; 5: e3737, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28852597

RESUMO

BACKGROUND: Gene regulatory variation has been proposed to play an important role in the adaptation of plants to environmental stress. In the central highlands of Mexico, farmer selection has generated a unique group of maize landraces adapted to the challenges of the highland niche. In this study, gene expression in Mexican highland maize and a reference maize breeding line were compared to identify evidence of regulatory variation in stress-related genes. It was hypothesised that local adaptation in Mexican highland maize would be associated with a transcriptional signature observable even under benign conditions. METHODS: Allele specific expression analysis was performed using the seedling-leaf transcriptome of an F1 individual generated from the cross between the highland adapted Mexican landrace Palomero Toluqueño and the reference line B73, grown under benign conditions. Results were compared with a published dataset describing the transcriptional response of B73 seedlings to cold, heat, salt and UV treatments. RESULTS: A total of 2,386 genes were identified to show allele specific expression. Of these, 277 showed an expression difference between Palomero Toluqueño and B73 alleles under benign conditions that anticipated the response of B73 cold, heat, salt and/or UV treatments, and, as such, were considered to display a prior stress response. Prior stress response candidates included genes associated with plant hormone signaling and a number of transcription factors. Construction of a gene co-expression network revealed further signaling and stress-related genes to be among the potential targets of the transcription factors candidates. DISCUSSION: Prior activation of responses may represent the best strategy when stresses are severe but predictable. Expression differences observed here between Palomero Toluqueño and B73 alleles indicate the presence of cis-acting regulatory variation linked to stress-related genes in Palomero Toluqueño. Considered alongside gene annotation and population data, allele specific expression analysis of plants grown under benign conditions provides an attractive strategy to identify functional variation potentially linked to local adaptation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA