Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Neurobiol ; 56(1): 648-657, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29779173

RESUMO

Glutaric acidemia type I (GA-I) is a neurometabolic disease caused by deficient activity of glutaryl-CoA dehydrogenase (GCDH) that results in accumulation of metabolites derived from lysine (Lys), hydroxylysine, and tryptophan catabolism. GA-I patients typically develop encephalopatic crises with striatal degeneration and progressive white matter defects. However, late onset patients as well as Gcdh-/- mice only suffer diffuse myelinopathy, suggesting that neuronal death and white matter defects are different pathophysiological events. To test this hypothesis, striatal myelin was studied in Gcdh-/- mice fed from 30 days of age during up to 60 days with a diet containing normal or moderately increased amounts of Lys (2.8%), which ensure sustained elevated levels of GA-I metabolites. Gcdh-/- mice fed with 2.8% Lys diet showed a significant decrease in striatal-myelinated areas and progressive vacuolation of white matter tracts, as compared with animals fed with normal diet. Myelin pathology increased with the time of exposure to high Lys diet and was also detected in 90-day old Gcdh-/- mice fed with normal diet, suggesting that dietary Lys accelerated the undergoing white matter damage. Gcdh-/- mice fed with 2.8% Lys diet also showed increased GRP78/BiP immunoreactivity in oligodendrocytes and neurons, denoting ER stress. However, the striatal and cortical neuronal density was unchanged with respect to normal diet. Thus, myelin damage seen in Gcdh-/- mice fed with 2.8% Lys seems to be mediated by a long-term increased levels of GA-I metabolites having deleterious effects in myelinating oligodendrocytes over neurons.


Assuntos
Dieta , Glutaril-CoA Desidrogenase/deficiência , Lisina/efeitos adversos , Substância Branca/enzimologia , Substância Branca/lesões , Animais , Contagem de Células , Morte Celular/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Chaperona BiP do Retículo Endoplasmático , Glutaril-CoA Desidrogenase/metabolismo , Camundongos , Bainha de Mielina/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Substância Branca/patologia
2.
Hum Mol Genet ; 24(16): 4504-15, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25968119

RESUMO

Glutaric acidemia type I (GA-I) is an inherited neurometabolic childhood disorder caused by defective activity of glutaryl CoA dehydrogenase (GCDH) which disturb lysine (Lys) and tryptophan catabolism leading to neurotoxic accumulation of glutaric acid (GA) and related metabolites. However, it remains unknown whether GA toxicity is due to direct effects on vulnerable neurons or mediated by GA-intoxicated astrocytes that fail to support neuron function and survival. As damaged astrocytes can also contribute to sustain high GA levels, we explored the ability of Gcdh-/- mouse astrocytes to produce GA and induce neuronal death when challenged with Lys. Upon Lys treatment, Gcdh-/- astrocytes synthetized and released GA and 3-hydroxyglutaric acid (3HGA). Lys and GA treatments also increased oxidative stress and proliferation in Gcdh-/- astrocytes, both prevented by antioxidants. Pretreatment with Lys also caused Gcdh-/- astrocytes to induce extensive death of striatal and cortical neurons when compared with milder effect in WT astrocytes. Antioxidants abrogated the neuronal death induced by astrocytes exposed to Lys or GA. In contrast, Lys or GA direct exposure on Gcdh-/- or WT striatal neurons cultured in the absence of astrocytes was not toxic, indicating that neuronal death is mediated by astrocytes. In summary, GCDH-defective astrocytes actively contribute to produce and accumulate GA and 3HGA when Lys catabolism is stressed. In turn, astrocytic GA production induces a neurotoxic phenotype that kills striatal and cortical neurons by an oxidative stress-dependent mechanism. Targeting astrocytes in GA-I may prompt the development of new antioxidant-based therapeutical approaches.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Astrócitos/metabolismo , Encefalopatias Metabólicas/genética , Encefalopatias Metabólicas/metabolismo , Corpo Estriado/metabolismo , Glutaril-CoA Desidrogenase/deficiência , Neurônios/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Animais , Astrócitos/patologia , Encefalopatias Metabólicas/patologia , Sobrevivência Celular/genética , Corpo Estriado/patologia , Modelos Animais de Doenças , Glutaril-CoA Desidrogenase/genética , Glutaril-CoA Desidrogenase/metabolismo , Humanos , Camundongos , Camundongos Knockout , Neurônios/patologia
3.
PLoS One ; 9(3): e90477, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24594605

RESUMO

We determined mRNA expression of the ionotropic glutamate receptors NMDA (NR1, NR2A and NR2B subunits), AMPA (GluR2 subunit) and kainate (GluR6 subunit), as well as of the glutamate transporters GLAST and GLT1 in cerebral cortex and striatum of wild type (WT) and glutaryl-CoA dehydrogenase deficient (Gchh-/-) mice aged 7, 30 and 60 days. The protein expression levels of some of these membrane proteins were also measured. Overexpression of NR2A and NR2B in striatum and of GluR2 and GluR6 in cerebral cortex was observed in 7-day-old Gcdh-/-. There was also an increase of mRNA expression of all NMDA subunits in cerebral cortex and of NR2A and NR2B in striatum of 30-day-old Gcdh-/- mice. At 60 days of life, all ionotropic receptors were overexpressed in cerebral cortex and striatum of Gcdh-/- mice. Higher expression of GLAST and GLT1 transporters was also verified in cerebral cortex and striatum of Gcdh-/- mice aged 30 and 60 days, whereas at 7 days of life GLAST was overexpressed only in striatum from this mutant mice. Furthermore, high lysine intake induced mRNA overexpression of NR2A, NR2B and GLAST transcripts in striatum, as well as of GluR2 and GluR6 in both striatum and cerebral cortex of Gcdh-/- mice. Finally, we found that the protein expression of NR2A, NR2B, GLT1 and GLAST were significantly greater in cerebral cortex of Gcdh-/- mice, whereas NR2B and GLT1 was similarly enhanced in striatum, implying that these transcripts were translated into their products. These results provide evidence that glutamate receptor and transporter expression is higher in Gcdh-/- mice and that these alterations may be involved in the pathophysiology of GA I and possibly explain, at least in part, the vulnerability of striatum and cerebral cortex to injury in patients affected by GA I.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/patologia , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Encefalopatias Metabólicas/patologia , Córtex Cerebral/metabolismo , Glutaril-CoA Desidrogenase/deficiência , Neostriado/metabolismo , Receptores de Glutamato/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/enzimologia , Sistema X-AG de Transporte de Aminoácidos/genética , Animais , Encefalopatias Metabólicas/enzimologia , Córtex Cerebral/patologia , Dieta , Feminino , Regulação da Expressão Gênica , Glutaril-CoA Desidrogenase/metabolismo , Lisina/metabolismo , Masculino , Camundongos , Neostriado/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Glutamato/genética
4.
Mol Genet Metab ; 108(1): 30-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23218171

RESUMO

Deficiency of glutaryl-CoA dehydrogenase (GCDH) activity or glutaric aciduria type I (GA I) is an inherited neurometabolic disorder biochemically characterized by predominant accumulation of glutaric acid and 3-hydroxyglutaric acid in the brain and other tissues. Affected patients usually present acute striatum necrosis during encephalopathic crises triggered by metabolic stress situations, as well as chronic leukodystrophy and delayed myelination. Considering that the mechanisms underlying the brain injury in this disease are not yet fully established, in the present study we investigated important parameters of oxidative stress in the brain (cerebral cortex, striatum and hippocampus), liver and heart of 30-day-old GCDH deficient knockout (Gcdh(-/-)) and wild type (WT) mice submitted to a normal lysine (Lys) (0.9% Lys), or high Lys diets (2.8% or 4.7% Lys) for 60 h. It was observed that the dietary supplementation of 2.8% and 4.7% Lys elicited noticeable oxidative stress, as verified by an increase of malondialdehyde concentrations (lipid oxidative damage) and 2-7-dihydrodichlorofluorescein (DCFH) oxidation (free radical production), as well as a decrease of reduced glutathione levels and alteration of various antioxidant enzyme activities (antioxidant defenses) in the cerebral cortex and the striatum, but not in the hippocampus, the liver and the heart of Gcdh(-/-) mice, as compared to WT mice receiving the same diets. Furthermore, alterations of oxidative stress parameters in the cerebral cortex and striatum were more accentuated in symptomatic, as compared to asymptomatic Gcdh(-/-) mice exposed to 4.7% Lys overload. Histopathological studies performed in the cerebral cortex and striatum of these animals exposed to high dietary Lys revealed increased expression of oxidative stress markers despite the absence of significant structural damage. The results indicate that a disruption of redox homeostasis in the cerebral cortex and striatum of young Gcdh(-/-) mice exposed to increased Lys diet may possibly represent an important pathomechanism of brain injury in GA I patients under metabolic stress.


Assuntos
Encéfalo/metabolismo , Glutaril-CoA Desidrogenase/metabolismo , Homeostase , Lisina/administração & dosagem , Animais , Suplementos Nutricionais , Glutaril-CoA Desidrogenase/genética , Camundongos , Camundongos Knockout , Oxirredução , Estresse Oxidativo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
5.
J Bioenerg Biomembr ; 43(1): 31-8, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21249436

RESUMO

Organic acidurias or organic acidemias constitute a group of inherited disorders caused by deficient activity of specific enzymes of amino acids, carbohydrates or lipids catabolism, leading to large accumulation and excretion of one or more carboxylic (organic) acids. Affected patients usually present neurologic symptoms and abnormalities, sometimes accompanied by cardiac and skeletal muscle alterations, whose pathogenesis is poorly known. However, in recent years growing evidence has emerged indicating that mitochondrial dysfunction is directly or indirectly involved in the pathology of various organic acidemias. Mitochondrial impairment in some of these diseases are generally due to mutations in nuclear genes of the tricarboxylic acid cycle or oxidative phosphorylation, while in others it seems to result from toxic influences of the endogenous organic acids to the mitochondrion. In this minireview, we will briefly summarize the present knowledge obtained from human and animal studies showing that disruption of mitochondrial homeostasis may represent a relevant pathomechanism of tissue damage in selective organic acidemias. The discussion will focus on mitochondrial alterations found in patients affected by organic acidemias and by the deleterious effects of the accumulating organic acids on mitochondrial pathways that are crucial for ATP formation and transfer. The elucidation of the mechanisms of toxicity of these acidic compounds offers new perspectives for potential novel adjuvant therapeutic strategies in selected disorders of this group.


Assuntos
Trifosfato de Adenosina/metabolismo , Ácidos Carboxílicos/metabolismo , Homeostase/fisiologia , Erros Inatos do Metabolismo/fisiopatologia , Mitocôndrias/fisiologia , Doenças Mitocondriais/fisiopatologia , Acetil-CoA C-Aciltransferase/deficiência , Erros Inatos do Metabolismo dos Aminoácidos/fisiopatologia , Animais , Síndrome de Barth/fisiopatologia , Encefalopatias Metabólicas/fisiopatologia , Encefalopatias Metabólicas Congênitas/fisiopatologia , Glutaril-CoA Desidrogenase/deficiência , Humanos , Mitocôndrias/metabolismo , Acidemia Propiônica/fisiopatologia , Púrpura/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA