Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Science ; 384(6700): 1064-1065, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38843349

RESUMO

Lacrymaria olor cytoskeleton and membrane "origami" enables rapid cell hyperextension.


Assuntos
Cilióforos , Citoesqueleto , Membrana Celular/ultraestrutura , Citoesqueleto/ultraestrutura , Cilióforos/fisiologia , Cilióforos/ultraestrutura
2.
Phys Rev Lett ; 130(24): 244001, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37390442

RESUMO

Certain spatial distributions of water inside partially filled containers can significantly reduce the bounce of the container. In experiments with containers filled to a volume fraction ϕ, we show that rotation offers control and high efficiency in setting such distributions and, consequently, in altering bounce markedly. High-speed imaging evidences the physics of the phenomenon and reveals a rich sequence of fluid-dynamics processes, which we translate into a model that captures our overall experimental findings.


Assuntos
Hidrodinâmica , Física , Água
3.
Materials (Basel) ; 15(11)2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35683252

RESUMO

This article focuses on agar biopolymer films that offer promise for developing biodegradable packaging, an important solution for reducing plastics pollution. At present there is a lack of data on the mechanical performance of agar biopolymer films using a simple plasticizer. This study takes a Design of Experiments approach to analyze how agar-glycerin biopolymer films perform across a range of ingredients concentrations in terms of their strength, elasticity, and ductility. Our results demonstrate that by systematically varying the quantity of agar and glycerin, tensile properties can be achieved that are comparable to agar-based materials with more complex formulations. Not only does our study significantly broaden the amount of data available on the range of mechanical performance that can be achieved with simple agar biopolymer films, but the data can also be used to guide further optimization efforts that start with a basic formulation that performs well on certain property dimensions. We also find that select formulations have similar tensile properties to thermoplastic starch (TPS), acrylonitrile butadiene styrene (ABS), and polypropylene (PP), indicating potential suitability for select packaging applications. We use our experimental dataset to train a neural network regression model that predicts the Young's modulus, ultimate tensile strength, and elongation at break of agar biopolymer films given their composition. Our findings support the development of further data-driven design and fabrication workflows.

4.
Phys Rev Lett ; 125(25): 254505, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33416350

RESUMO

In this Letter, we experimentally demonstrate self-organization of small tracers under the action of longitudinal Faraday waves in a narrow container. We observe a steady current formation dividing the interface in small cells given by Faraday-wave symmetries. These streaming currents rotate in each cell, and their circulation increases with wave amplitude. This streaming flow drives the tracers to form patterns, whose shapes depend on the Faraday-wave amplitude: From low to high amplitudes, we find tracers dispersed on vortices, narrow rotating rings, and a hedgehoglike pattern. We first describe the main pattern features and characterize the wave and tracers' motion. We then show experimentally that the main source of the streaming flow is the spatiotemporal-dependent shear at the wall contact line created by the Faraday wave itself. We end by presenting a 2D compressible advection model that considers the minimal ingredients present in the Faraday experiment, namely, the stationary circulation, the stretching component due to the oscillatory wave, and a steady converging field, which combined produce the observed self-organized patterns.

5.
Phys Rev E ; 99(4-1): 043001, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31108605

RESUMO

The properties of a hinged floating elastic sheet of finite length under compression are considered. Numerical continuation is used to compute spatially localized buckled states with many spatially localized folds. Both symmetric and antisymmetric states are computed and the corresponding bifurcation diagrams determined. Weakly nonlinear analysis is used to analyze the transition from periodic wrinkles to singlefold and multifold states and to compute their energy. States with the same number of folds have energies that barely differ from each other and the energy gap decreases exponentially as localization increases. The stability of the different competing states is studied and the multifold solutions are all found to be unstable. However, the decay time into solutions with fewer folds can be so slow that multifolds may appear to be stable.

6.
Phys Rev E ; 99(3-1): 033115, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30999404

RESUMO

Faraday waves are a classic example of a system in which an extended pattern emerges under spatially uniform forcing. Motivated by systems in which uniform excitation is not plausible, we study both experimentally and theoretically the effect of heterogeneous forcing on Faraday waves. Our experiments show that vibrations restricted to finite regions lead to the formation of localized subharmonic wave patterns and change the onset of the instability. The prototype model used for the theoretical calculations is the parametrically driven and damped nonlinear Schrödinger equation, which is known to describe well Faraday-instability regimes. For an energy injection with a Gaussian spatial profile, we show that the evolution of the envelope of the wave pattern can be reduced to a Weber-equation eigenvalue problem. Our theoretical results provide very good predictions of our experimental observations provided that the decay length scale of the Gaussian profile is much larger than the pattern wavelength.

7.
Phys Rev Lett ; 112(16): 164101, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24815651

RESUMO

We have identified a physical mechanism that rules the confinement of nonpropagating hydrodynamic solitons. We show that thin boundary layers arising on walls are responsible for a jump in the local damping. The outcome is a weak dissipation-driven repulsion that determines decisively the solitons' long-time behavior. Numerical simulations of our model are consistent with experiments. Our results uncover how confinement can generate a localized distribution of dissipation in out-of-equilibrium systems. Moreover, they show the preponderance of such a subtle effect in the behavior of localized structures. The reported results should explain the dynamic behavior of other confined dissipative systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA