Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Phys Lipids ; 239: 105113, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34216586

RESUMO

1,8-cineole is a monoterpene commonly used by the food, cosmetic, and pharmaceutical industries owing to its flavor and fragrances properties. In addition, this bioactive monoterpene has demonstrated bactericidal and fungicidal activities. However, such activities are limited due to its low aqueous solubility and stability. This study aimed to develop nanoemulsion containing cineole and assess its stability and antibacterial activity in this context. The spontaneous emulsification method was used to prepare nanoemulsion (NE) formulations (F1, F2, F3, F4, and F5). Following the development of NE formulations, we chose the F1 formulation that presented an average droplet size (in diameter) of about 100 nm with narrow size distribution (PdI <0.2) and negative zeta potential (∼ - 35 mV). According to the analytical centrifugation method with photometric detection, F1 and F5 formulations were considered the most stable NE with lower droplet migration velocities. In addition, F1 formulation showed high incorporation efficiency (> 80 %) and TEM analyses demonstrated nanosized oil droplets with irregular spherical shapes and without any aggregation tendency. Antibacterial activity assessment showed that F1 NE was able to enhance the cineole action against Staphylococcus aureus, Enterococcus faecalis, and Streptococcus pyogenes. Therefore, using a simple and reproducible method of low energy emulsification we designed a stable nanoemulsion containing 1,8-cineole with improved antibacterial activity against Gram-positive strains.


Assuntos
Antibacterianos/química , Emulsões/química , Eucaliptol/química , Nanoestruturas/química , Antibacterianos/farmacologia , Estabilidade de Medicamentos , Enterococcus faecalis/efeitos dos fármacos , Eucaliptol/farmacologia , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Staphylococcus aureus/efeitos dos fármacos
2.
Int J Pharm ; 518(1-2): 228-241, 2017 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-28063902

RESUMO

Cutaneous melanoma is the most aggressive skin cancer and is particularly resistant to current therapeutic approaches. Photodynamic therapy (PDT) is a well-established photoprocess that is employed to treat some cancers, including non-melanoma skin cancer. Aluminum chloride phthalocyanine (ClAlPc) is used as a photosensitizer in PDT; however, its high hydrophobicity hampers its photodynamic activity under physiological conditions. The aim of this study was to produce solid lipid nanoparticles (SLN) containing ClAlPc using the direct emulsification method. ClAlPc-loaded SLNs (ClAlPc/SLNs) were characterized according to their particle size and distribution, zeta potential, morphology, encapsulation efficiency, stability, and phototoxic action in vitro in B16-F10 melanoma cells. ClAlPc/SLN had a mean diameter between 100 and 200nm, homogeneous size distribution (polydispersity index <0.3), negative zeta potential, and spherical morphology. The encapsulation efficiency was approximately 100%. The lipid crystallinity was investigated using X-ray diffraction and differential scanning calorimetry and indicated that ClAlPc was integrated into the SLN matrix. The ClAlPc/SLN formulations maintained their physicochemical stability without expelling the drug over a 24-month period. Compared to free ClAlPc, ClAlPc/SLN exerted outstanding phototoxicity effects in vitro against melanoma cells. Therefore, our results demonstrated that the ClAlPc/SLN described in the current study has the potential for use in further preclinical and clinical trials in PDT for melanoma treatment.


Assuntos
Indóis , Nanopartículas , Compostos Organometálicos , Fotoquimioterapia , Fármacos Fotossensibilizantes , Cloreto de Alumínio , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Indóis/administração & dosagem , Indóis/química , Lipídeos/administração & dosagem , Lipídeos/química , Melanoma Experimental , Camundongos , Células NIH 3T3 , Nanopartículas/administração & dosagem , Nanopartículas/química , Compostos Organometálicos/administração & dosagem , Compostos Organometálicos/química , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/química , Neoplasias Cutâneas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA