Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Fish Dis ; 44(3): 287-296, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33075142

RESUMO

Surveillance of antibiotic resistance is of paramount importance for animal welfare and production. Despite aquaculture being a main source of animal protein, studies on antibiotic susceptibility in fish pathogens are scarce. Renibacterium salmoninarum, the aetiological agent of bacterial kidney disease (BKD), is one of the most common bacterial pathogens affecting salmon farming. In this work, we present an analysis of susceptibility patterns using determinations of minimum inhibitory concentration (MIC) for 65 field isolates, which were collected over seven years (2013-2019) from Atlantic salmon (Salmo salar) and coho salmon (Oncorhynchus kisutch) farms across southern Chile. The MIC protocol described by the Clinical Laboratory Standards Institute (CLSI) was used, but with microdilution instead of macrodilution and eight instead of four days of incubation. Two laboratories independently conducted analyses to provide data on the epidemiological cut-off values for R. salmoninarum to florfenicol, oxytetracycline and erythromycin. By using two calculation methods, our results provide evidence for an evolving subpopulation of non-wild-type isolates for the macrolide erythromycin, which is consistent with the respective treatment frequencies prescribed against BKD. Contrasting with what was expected, R. salmoninarum isolates were most susceptible to florfenicol and oxytetracycline, both of which are widely used antibiotics currently used in the Chilean salmon industry. The presented findings can serve as a reference for national or international antibiotic surveillance programmes, for both MIC interpretation and to identify emerging resistance to the conventional drugs used in BKD management. Finally, our results indicate that an 8-day incubation period for establishing MIC values of R. salmoninarum should be considered in a future revision of the CLSI guidelines.


Assuntos
Antibacterianos/farmacologia , Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Positivas/veterinária , Testes de Sensibilidade Microbiana/veterinária , Animais , Aquicultura , Chile , Doenças dos Peixes/tratamento farmacológico , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Testes de Sensibilidade Microbiana/métodos , Oncorhynchus kisutch , Renibacterium/efeitos dos fármacos , Salmo salar
2.
Front Microbiol ; 9: 923, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867834

RESUMO

Antibiotic resistance is a major public health concern due to its association with the loss of efficacy of antimicrobial therapies. Horizontal transfer events may play a significant role in the dissemination of resistant bacterial phenotypes, being mobilizable plasmids a well-known mechanism. In this study, we aimed to gain insights into the genetics underlying the development of antibiotic resistance by Piscirickettsia salmonis isolates, a bacterial fish pathogen and causative agent of salmonid piscirickettsiosis, and the main target of antibiotics used in Chilean salmon farming. We provide experimental evidence that the plasmid p3PS10, which harbors multidrug resistance genes for chloramphenicol (cat2), tetracyclines [tet(31)], aminoglycosides (sat1 and aadA1), and sulfonamides (sul2), is carried by a group of P. salmonis isolates exhibiting a markedly reduced susceptibility to oxytetracycline in vitro (128-256 µg/mL of minimal inhibitory concentration, MIC). Antibiotic susceptibility analysis extended to those antibiotics showed that MIC of chloramphenicol, streptomycin, and sulfamethoxazole/trimethoprim were high, but the MIC of florfenicol remained at the wild-type level. By means of molecular cloning, we demonstrate that those genes encoding putative resistance markers are indeed functional. Interestingly, mating assays clearly show that p3PS10 is able to be transferred into and replicate in different hosts, thereby conferring phenotypes similar to those found in the original host. According to epidemiological data, this strain is distributed across aquaculture settings in southern Chile and is likely to be responsible for oxytetracycline treatment failures. This work demonstrates that P. salmonis is more versatile than it was thought, capable of horizontally transferring DNA, and probably playing a role as a vector of resistance traits among the seawater bacterial population. However, the low transmission frequency of p3PS10 suggests a negligible chance of resistance markers being spread to human pathogens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA