Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Heliyon ; 9(2): e13518, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36785832

RESUMO

The COVID-19 pandemic generated a new dynamic around waste management. Personal protective equipment such as masks, gloves, and face shields were essential to prevent the spread of the disease. However, despite the increase in waste, no technical alternatives were foreseen for the recovery of these wastes, which are made up of materials that can be valued for energy recovery. It is essential to design processes such as waste to energy to promote the circular economy. Therefore, techniques such as pyrolysis and thermal oxidative decomposition of waste materials need to be studied and scaled up, for which kinetic models and thermodynamic parameters are required to allow the design of this reaction equipment. This work develops kinetic models of the thermal degradation process by pyrolysis as an alternative for energy recovery of used masks generated by the COVID-19 pandemic. The wasted masks were isolated for 72 h for virus inactivation and characterized by FTIR-ATR spectroscopy, elemental analysis, and determinate the higher calorific value (HCV). The composition of the wasted masks included polypropylene, polyethylene terephthalate, nylon, and spandex, with higher calorific values than traditional fuels. For this reason, they are susceptible to value as an energetic material. Thermal degradation was performed by thermogravimetric analysis at different heating rates in N2 atmosphere. The gases produced were characterized by gas chromatography and mass spectrometry. The kinetic model was based on the mass loss of the masks on the thermal degradation, then calculated activation energies, reaction orders, pre-exponential factors, and thermodynamic parameters. Kinetics models such as Coats and Redfern, Horowitz and Metzger, Kissinger-Akahira-Sunose were studied to find the best-fit models between the experimental and calculated data. The kinetic and thermodynamic parameters of the thermal degradation processes demonstrated the feasibility and high potential of recovery of these residues with conversions higher than 89.26% and obtaining long-chain branched hydrocarbons, cyclic hydrocarbons, and CO2 as products.

2.
Neurol Int ; 14(4): 997-1006, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36548184

RESUMO

BACKGROUND: Dopamine Responsive Dystonia (DRD) and Juvenile Parkinsonism (JP) are two diseases commonly presenting with parkinsonian symptoms in young patients. Current clinical guidelines offer a diagnostic approach based on molecular analysis. However, developing countries have limitations in terms of accessibility to these tests. We aimed to assess the utility of imaging equipment, usually more available worldwide, to help diagnose and improve patients' quality of life with these diseases. METHODS: We performed a systematic literature review in English using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) and meta-analysis of observational studies in epidemiology (MOOSE) protocols. We only used human clinical trials about dopamine responsive dystonia and juvenile parkinsonism patients in which a fluorodopa (FD) positron emission tomography (PET) scan was performed to identify its use in these diseases. RESULTS: We included six studies that fulfilled our criteria. We found a clear pattern of decreased uptake in the putamen and caudate nucleus in JP cases. At the same time, the results in DRD were comparable to normal subjects, with only a slightly decreased marker uptake in the previously mentioned regions by the FD PET scan. CONCLUSIONS: We found a distinctive pattern for each of these diseases. Identifying these findings with FD PET scans can shorten the delay in making a definitive diagnosis when genetic testing is unavailable, a common scenario in developing countries.

3.
J Ind Microbiol Biotechnol ; 47(1): 1-20, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31691030

RESUMO

Denitrification is one of the key processes of the global nitrogen (N) cycle driven by bacteria. It has been widely known for more than 100 years as a process by which the biogeochemical N-cycle is balanced. To study this process, we develop an individual-based model called INDISIM-Denitrification. The model embeds a thermodynamic model for bacterial yield prediction inside the individual-based model INDISIM and is designed to simulate in aerobic and anaerobic conditions the cell growth kinetics of denitrifying bacteria. INDISIM-Denitrification simulates a bioreactor that contains a culture medium with succinate as a carbon source, ammonium as nitrogen source and various electron acceptors. To implement INDISIM-Denitrification, the individual-based model INDISIM was used to give sub-models for nutrient uptake, stirring and reproduction cycle. Using a thermodynamic approach, the denitrification pathway, cellular maintenance and individual mass degradation were modeled using microbial metabolic reactions. These equations are the basis of the sub-models for metabolic maintenance, individual mass synthesis and reducing internal cytotoxic products. The model was implemented in the open-access platform NetLogo. INDISIM-Denitrification is validated using a set of experimental data of two denitrifying bacteria in two different experimental conditions. This provides an interactive tool to study the denitrification process carried out by any denitrifying bacterium since INDISIM-Denitrification allows changes in the microbial empirical formula and in the energy-transfer-efficiency used to represent the metabolic pathways involved in the denitrification process. The simulator can be obtained from the authors on request.


Assuntos
Desnitrificação , Compostos de Amônio/metabolismo , Bactérias/metabolismo , Reatores Biológicos/microbiologia , Carbono/metabolismo , Nitrogênio/metabolismo , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA