Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 18(2): e0011956, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38359089

RESUMO

BACKGROUND: Chagas disease is caused by the protozoan parasite Trypanosoma cruzi and leads to ~10,000 deaths each year. Nifurtimox and benznidazole are the only two drugs available but have significant adverse effects and limited efficacy. New chemotherapeutic agents are urgently required. Here we identified inhibitors of the acidic M17 leucyl-aminopeptidase from T. cruzi (LAPTc) that show promise as novel starting points for Chagas disease drug discovery. METHODOLOGY/PRINCIPAL FINDINGS: A RapidFire-MS screen with a protease-focused compound library identified novel LAPTc inhibitors. Twenty-eight hits were progressed to the dose-response studies, from which 12 molecules inhibited LAPTc with IC50 < 34 µM. Of these, compound 4 was the most potent hit and mode of inhibition studies indicate that compound 4 is a competitive LAPTc inhibitor, with Ki 0.27 µM. Compound 4 is selective with respect to human LAP3, showing a selectivity index of >500. Compound 4 exhibited sub-micromolar activity against intracellular T. cruzi amastigotes, and while the selectivity-window against the host cells was narrow, no toxicity was observed for un-infected HepG2 cells. In silico modelling of the LAPTc-compound 4 interaction is consistent with the competitive mode of inhibition. Molecular dynamics simulations reproduce the experimental binding strength (-8.95 kcal/mol), and indicate a binding mode based mainly on hydrophobic interactions with active site residues without metal cation coordination. CONCLUSIONS/SIGNIFICANCE: Our data indicates that these new LAPTc inhibitors should be considered for further development as antiparasitic agents for the treatment of Chagas disease.


Assuntos
Doença de Chagas , Tripanossomicidas , Trypanosoma cruzi , Humanos , Leucil Aminopeptidase/química , Leucil Aminopeptidase/farmacologia , Leucil Aminopeptidase/uso terapêutico , Doença de Chagas/tratamento farmacológico , Descoberta de Drogas , Antiparasitários/uso terapêutico , Tripanossomicidas/uso terapêutico
2.
SLAS Discov ; 25(9): 1064-1071, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32400260

RESUMO

Leucyl aminopeptidases (LAPs) are involved in multiple cellular functions, which, in the case of infectious diseases, includes participation in the pathogen-host cell interface and pathogenesis. Thus, LAPs are considered good candidate drug targets, and the major M17-LAP from Trypanosoma cruzi (LAPTc) in particular is a promising target for Chagas disease. To exploit LAPTc as a potential target, it is essential to develop potent and selective inhibitors. To achieve this, we report a high-throughput screening method for LAPTc. Two methods were developed and optimized: a Leu-7-amido-4-methylcoumarin-based fluorogenic assay and a RapidFire mass spectrometry (RapidFire MS)-based assay using the LSTVIVR peptide as substrate. Compared with a fluorescence assay, the major advantages of the RapidFire MS assay are a greater signal-to-noise ratio as well as decreased consumption of enzyme. RapidFire MS was validated with the broad-spectrum LAP inhibitors bestatin (IC50 = 0.35 µM) and arphamenine A (IC50 = 15.75 µM). We suggest that RapidFire MS is highly suitable for screening for specific LAPTc inhibitors.


Assuntos
Doença de Chagas/diagnóstico , Ensaios de Triagem em Larga Escala , Leucil Aminopeptidase/isolamento & purificação , Trypanosoma cruzi/isolamento & purificação , Sequência de Aminoácidos/genética , Animais , Doença de Chagas/enzimologia , Doença de Chagas/parasitologia , Humanos , Cinética , Leucil Aminopeptidase/genética , Espectrometria de Massas , Especificidade por Substrato , Trypanosoma cruzi/enzimologia , Trypanosoma cruzi/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA