Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Gen Comp Endocrinol ; 357: 114599, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39128814

RESUMO

Knowledge on hormonal regulation of reproductive cycles in viperid snakes is still incipient, especially when it comes to females and tropical species. There is an urgent need to understand the reproduction of venomous snakes to improve assisted reproduction techniques and optimize the maintenance of these animals in captivity. With this in mind, we monitored Northern pit viper females year-round throughout different seasons via serum levels of progesterone (P4) and estradiol (E2) in conjunction with ultrasound examinations. Ovarian follicles were classified according to their size and stage of vitellogenesis in F-I and F-II (non-vitellogenic phase) or in F-III and F-IV (vitellogenic phase). During autumn and winter, five adult males were rotated among these females for reproductive pairing, which resulted in 17 copulations and 2 pregnancies in the first year and 12 copulations and 5 pregnancies in the second year. Then, we assessed changes in P4 and E2 levels according to seasons, predominant ovarian structures and the presence of embryos or eggs in the oviduct. Our findings showed high levels of E2 when a greater number of vitellogenic follicles were detected, indicating a possible influence of E2 on vitellogenesis and higher levels of P4 whenever eggs and embryos were visualized in the oviduct, implying its role in maintaining pregnancy. Descriptive analysis of the vipers' ovarian cycles revealed a greater number of vitellogenic follicles during winter, probably as a result of increases in E2; whereas pregnancies occurred predominantly in spring, under the influence of P4. The use of ultrasound images, as a minimally invasive methodology, associated with serum steroid levels has proven to be an efficient approach in the reproductive monitoring of Northern pit vipers in vivo. In addition, these data suggest that female pit vipers under human care display a seasonal reproductive cycle, despite earlier studies involving captive males of the species indicating a lack of seasonality in sperm production and quality.


Assuntos
Estradiol , Progesterona , Ultrassonografia , Animais , Feminino , Progesterona/sangue , Estradiol/sangue , Estações do Ano , Masculino , Bothrops , Ovário/diagnóstico por imagem , Ovário/metabolismo , Folículo Ovariano/diagnóstico por imagem , Folículo Ovariano/metabolismo , Genitália Feminina/diagnóstico por imagem , Bothrops atrox
2.
Toxicon ; 244: 107748, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38710309

RESUMO

Rattlesnakes belonging to the genus Crotalus are widely distributed throughout the Americas. In Brazil, symptoms commonly associated with envenomation by Crotalus durissus collilineatus include myalgia, rhabdomyolysis, renal failure, neurotoxicity, and progressive paralysis, which are related to the protein composition of this venom. Snake venom composition exhibits compositional variability that may reflect geographic distribution, age, captivity, diet, sex, and even individual genetics. Although seasonality is also considered a possible source of variation, there are few reports of such variability in snake venom. In this work, venoms of the same eight C. durissus collilineatus were extracted every three months for two years, to analyze seasonal changes in composition and activities. To this end, venom composition was analyzed by protein quantification, SDS-PAGE, and HPLC, and the LAAO, PLA2 and coagulant activities were measured. Venoms of these C. d. collilineatus showed minor seasonal differences in venom activities and no composition differences were found. LAAO and coagulant activities displayed a pattern of seasonal change, while PLA2 activity seemed to have no seasonality tendency. Also, there are sexual differences, in which males seem to be more stable than females in regard to some activities. Individual variability occurs even in seasonal variation of activities, highlighting the importance of controlling circumstances of venom extraction before comparing results between groups of snakes.


Assuntos
Venenos de Crotalídeos , Crotalus , Estações do Ano , Animais , Venenos de Crotalídeos/toxicidade , Venenos de Crotalídeos/química , Masculino , Feminino , Brasil , Cromatografia Líquida de Alta Pressão , Fosfolipases A2 , Serpentes Peçonhentas
3.
PLoS One ; 19(2): e0295806, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38319909

RESUMO

In Brazil, the genus Bothrops is responsible for most ophidian accidents. Snake venoms have a wide variety of proteins and peptides exhibiting a broad repertoire of pharmacological and toxic effects that elicit systemic injury and characteristic local effects. The snakes' natural resistance to envenomation caused by the presence of inhibitory compounds on their plasma have been extensively studied. However, the presence of these inhibitors in different developmental stages is yet to be further discussed. The aim of this study was to evaluate the ontogeny of Bothrops jararaca plasma inhibitor composition and, to this end, plasma samples of B. jararaca were obtained from different developmental stages (neonates, youngs, and adults) and sexes (female and male). SDS-PAGE, Western blotting, affinity chromatography, and mass spectrometry were performed to analyze the protein profile and interaction between B. jararaca plasma and venom proteins. In addition, the presence of γBjPLI, a PLA2 inhibitor previously identified and characterized in B. jararaca serum, was confirmed by Western blotting. According to our results, 9-17% of plasma proteins were capable of binding to venom proteins in the three developmental stages. The presence of different endogenous inhibitors and, more specifically, different PLA2 inhibitor (PLI) classes and antihemorrhagic factors were confirmed in specimens of B. jararaca from newborn by mass spectrometry. For the first time, the αPLI and ßPLI were detected in B. jararaca plasma, although low or no ontogenetic and sexual correlation were found. The γPLI were more abundant in adult female, than in neonate and young female, but similar to neonate, young and adult male according to the results of mass spectrometry analysis. Our results suggest that there are proteins in the plasma of these animals that can help counteract the effects of self-envenomation from birth.


Assuntos
Bothrops , Venenos de Crotalídeos , Animais , Masculino , Feminino , Bothrops jararaca , Proteômica/métodos , Inibidores de Fosfolipase A2 , Bothrops/metabolismo , Fosfolipases A2/metabolismo , Venenos de Crotalídeos/química
4.
Gen Comp Endocrinol, v. 357, n. 1, 114599, out. 2024
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5447

RESUMO

Knowledge on hormonal regulation of reproductive cycles in viperid snakes is still incipient, especially when it comes to females and tropical species. There is an urgent need to understand the reproduction of venomous snakes to improve assisted reproduction techniques and optimize the maintenance of these animals in captivity. With this in mind, we monitored Northern pit viper females year-round throughout different seasons via serum levels of progesterone (P4) and estradiol (E2) in conjunction with ultrasound examinations. Ovarian follicles were classified according to their size and stage of vitellogenesis in F-I and F-II (non-vitellogenic phase) or in F-III and F-IV (vitellogenic phase). During autumn and winter, five adult males were rotated among these females for reproductive pairing, which resulted in 17 copulations and 2 pregnancies in the first year and 12 copulations and 5 pregnancies in the second year. Then, we assessed changes in P4 and E2 levels according to seasons, predominant ovarian structures and the presence of embryos or eggs in the oviduct. Our findings showed high levels of E2 when a greater number of vitellogenic follicles were detected, indicating a possible influence of E2 on vitellogenesis and higher levels of P4 whenever eggs and embryos were visualized in the oviduct, implying its role in maintaining pregnancy. Descriptive analysis of the vipers’ ovarian cycles revealed a greater number of vitellogenic follicles during winter, probably as a result of increases in E2; whereas pregnancies occurred predominantly in spring, under the influence of P4. The use of ultrasound images, as a minimally invasive methodology, associated with serum steroid levels has proven to be an efficient approach in the reproductive monitoring of Northern pit vipers in vivo. In addition, these data suggest that female pit vipers under human care display a seasonal reproductive cycle, despite earlier studies involving captive males of the species indicating a lack of seasonality in sperm production and quality.

5.
J Mol Evol, v. 29, n. 2024, 317-328, mai. 2024
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5430

RESUMO

Snakes in the family Elapidae largely produce venoms rich in three-fnger toxins (3FTx) that bind to the α1 subunit of nicotinic acetylcholine receptors (nAChRs), impeding ion channel activity. These neurotoxins immobilize the prey by disrupting muscle contraction. Coral snakes of the genus Micrurus are specialist predators who produce many 3FTx, making them an interesting system for examining the coevolution of these toxins and their targets in prey animals. We used a bio-layer interferometry technique to measure the binding interaction between 15 Micrurus venoms and 12 taxon-specifc mimotopes designed to resemble the orthosteric binding region of the muscular nAChR subunit. We found that Micrurus venoms vary greatly in their potency on this assay and that this variation follows phylogenetic patterns rather than previously reported patterns of venom composition. The long-tailed Micrurus tend to have greater binding to nAChR orthosteric sites than their short-tailed relatives and we conclude this is the likely ancestral state. The repeated loss of this activity may be due to the evolution of 3FTx that bind to other regions of the nAChR. We also observed variations in the potency of the venoms depending on the taxon of the target mimotope. Rather than a pattern of prey-specifcity, we found that mimotopes modeled after snake nAChRs are less susceptible to Micrurus venoms and that this resistance is partly due to a characteristic tryptophan→serine mutation within the orthosteric site in all snake mimotopes. This resistance may be part of a Red Queen arms race between coral snakes and their prey.

6.
J. Mol. Evol., v. 92, n. 2024, 317–328, maio 2024
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5401

RESUMO

Snakes in the family Elapidae largely produce venoms rich in three-fnger toxins (3FTx) that bind to the α1 subunit of nicotinic acetylcholine receptors (nAChRs), impeding ion channel activity. These neurotoxins immobilize the prey by disrupting muscle contraction. Coral snakes of the genus Micrurus are specialist predators who produce many 3FTx, making them an interesting system for examining the coevolution of these toxins and their targets in prey animals. We used a bio-layer interferometry technique to measure the binding interaction between 15 Micrurus venoms and 12 taxon-specifc mimotopes designed to resemble the orthosteric binding region of the muscular nAChR subunit. We found that Micrurus venoms vary greatly in their potency on this assay and that this variation follows phylogenetic patterns rather than previously reported patterns of venom composition. The long-tailed Micrurus tend to have greater binding to nAChR orthosteric sites than their short-tailed relatives and we conclude this is the likely ancestral state. The repeated loss of this activity may be due to the evolution of 3FTx that bind to other regions of the nAChR. We also observed variations in the potency of the venoms depending on the taxon of the target mimotope. Rather than a pattern of prey-specifcity, we found that mimotopes modeled after snake nAChRs are less susceptible to Micrurus venoms and that this resistance is partly due to a characteristic tryptophan→serine mutation within the orthosteric site in all snake mimotopes. This resistance may be part of a Red Queen arms race between coral snakes and their prey.

7.
Toxicon, v. 244, 107748, mai. 2024
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5381

RESUMO

Rattlesnakes belonging to the genus Crotalus are widely distributed throughout the Americas. In Brazil, symptoms commonly associated with envenomation by Crotalus durissus collilineatus include myalgia, rhabdomyolysis, renal failure, neurotoxicity, and progressive paralysis, which are related to the protein composition of this venom. Snake venom composition exhibits compositional variability that may reflect geographic distribution, age, captivity, diet, sex, and even individual genetics. Although seasonality is also considered a possible source of variation, there are few reports of such variability in snake venom. In this work, venoms of the same eight C. durissus collilineatus were extracted every three months for two years, to analyze seasonal changes in composition and activities. To this end, venom composition was analyzed by protein quantification, SDS-PAGE, and HPLC, and the LAAO, PLA2 and coagulant activities were measured. Venoms of these C. d. collilineatus showed minor seasonal differences in venom activities and no composition differences were found. LAAO and coagulant activities displayed a pattern of seasonal change, while PLA2 activity seemed to have no seasonality tendency. Also, there are sexual differences, in which males seem to be more stable than females in regard to some activities. Individual variability occurs even in seasonal variation of activities, highlighting the importance of controlling circumstances of venom extraction before comparing results between groups of snakes.

8.
PloS One, v. 19, n. 2, e0295806, fev. 2024
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5280

RESUMO

In Brazil, the genus Bothrops is responsible for most ophidian accidents. Snake venoms have a wide variety of proteins and peptides exhibiting a broad repertoire of pharmacological and toxic effects that elicit systemic injury and characteristic local effects. The snakes’ natural resistance to envenomation caused by the presence of inhibitory compounds on their plasma have been extensively studied. However, the presence of these inhibitors in different developmental stages is yet to be further discussed. The aim of this study was to evaluate the ontogeny of Bothrops jararaca plasma inhibitor composition and, to this end, plasma samples of B. jararaca were obtained from different developmental stages (neonates, youngs, and adults) and sexes (female and male). SDS-PAGE, Western blotting, affinity chromatography, and mass spectrometry were performed to analyze the protein profile and interaction between B. jararaca plasma and venom proteins. In addition, the presence of γBjPLI, a PLA2 inhibitor previously identified and characterized in B. jararaca serum, was confirmed by Western blotting. According to our results, 9–17% of plasma proteins were capable of binding to venom proteins in the three developmental stages. The presence of different endogenous inhibitors and, more specifically, different PLA2 inhibitor (PLI) classes and antihemorrhagic factors were confirmed in specimens of B. jararaca from newborn by mass spectrometry. For the first time, the αPLI and βPLI were detected in B. jararaca plasma, although low or no ontogenetic and sexual correlation were found. The γPLI were more abundant in adult female, than in neonate and young female, but similar to neonate, young and adult male according to the results of mass spectrometry analysis. Our results suggest that there are proteins in the plasma of these animals that can help counteract the effects of self-envenomation from birth.

9.
Mem Inst Oswaldo Cruz ; 118: e220225, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38018570

RESUMO

BACKGROUND: Leishmaniasis, a neglected disease caused by the parasite Leishmania, is treated with drugs associated with high toxicity and limited efficacy, in addition to constant reports of the emergence of resistant parasites. In this context, snake serums emerge as good candidates since they are natural sources with the potential to yield novel drugs. OBJECTIVES: We aimed to show the antileishmanial effects of γCdcPLI, a phospholipase A2 inhibitor from Crotalus durissus collilineatus snake serum, against Leishmania (Leishmania) amazonensis. METHODS: Promastigotes forms were exposed to γCdcPLI, and we assessed the parasite viability and cell cycle, as well as invasion and proliferation assays. FINDINGS: Despite the low cytotoxicity effect on macrophages, our data indicate that γCdcPLI has a direct effect on parasites promoting an arrest in the G1 phase and reduction in the G2/M phase at the highest dose tested. Moreover, this PLA2 inhibitor reduced the parasite infectivity when promastigotes were pre-treated. Also, we demonstrated that the γCdcPLI treatment modulated the host cell environment impairing early and late steps of the parasitism. MAIN CONCLUSIONS: γCdcPLI is an interesting tool for the discovery of new essential targets on the parasite, as well as an alternative compound to improve the effectiveness of the leishmaniasis treatment.


Assuntos
Antiprotozoários , Leishmania , Leishmaniose , Animais , Humanos , Camundongos , Crotalus , Leishmaniose/tratamento farmacológico , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Camundongos Endogâmicos BALB C
10.
Biochem Biophys Res Commun ; 683: 149090, 2023 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-37862779

RESUMO

Snake venoms are known to be major sources of peptides with different pharmacological properties. In this study, we comprehensively explored the venom peptidomes of three specimens of Lachesismuta, the largest venomous snake in South America, using mass spectrometry techniques. The analysis revealed 19 main chromatographic peaks common to all specimens. A total of 151 peptides were identified, including 69 from a metalloproteinase, 58 from the BPP-CNP precursor, and 24 from a l-amino acid oxidase. To our knowledge, 126 of these peptides were reported for the first time in this work, including a new SVMP-derived peptide fragment, Lm-10a. Our findings highlight the dynamic nature of toxin maturation in snake venoms, driven by proteolytic processing, post-translational modifications, and cryptide formation.


Assuntos
Bradicinina , L-Aminoácido Oxidase , L-Aminoácido Oxidase/química , Peptídeos/química , Venenos de Serpentes , Metaloproteases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA