Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Braz J Med Biol Res ; 27(5): 1123-8, 1994 May.
Artigo em Inglês | MEDLINE | ID: mdl-8000332

RESUMO

Cerebral ischemia causes cell death of vulnerable neurons in mammalian brain. Wistar adult rats (male and female, weighing 180-280 g) were submitted to 2 min, 10 min, or to 2 and 10 min (separated by a 24-h interval) of transient forebrain ischemia by the four-vessel occlusion method. Animals subjected to the longer ischemic episodes had massive necrosis of pyramidal CA1 cells of the hippocampus, while animals receiving double ischemia (2 + 10 min) showed neuronal tolerance to the ischemic insult. ATP-diphosphohydrolase activity from hippocampal synaptosomes was assayed in these three groups (N = 6 animals/group) under two conditions: no reperfusion and 5-min of reperfusion. The control values for ATPase and ADPase activities were 144.7 +/- 18.8 and 60.6 +/- 5.24 nmol Pi min-1 mg protein-1, respectively. The 10-min group without reperfusion showed an enhancement of approximately 20% for ATPase and ADPase activities. In reperfused rats, only the 2-min group had a 20% increase in both enzymatic activities. We suggest that modulation of ATP-diphosphohydrolase activity might be involved in molecular events that follow both ischemia and reperfusion.


Assuntos
Apirase/metabolismo , Hipocampo/enzimologia , Ataque Isquêmico Transitório/enzimologia , Sinaptossomos/enzimologia , Adenosina Trifosfatases/metabolismo , Animais , Feminino , Masculino , Ratos , Ratos Wistar , Reperfusão , Fatores de Tempo
2.
Braz. j. med. biol. res ; 27(5): 1123-1128, May 1994.
Artigo em Inglês | LILACS | ID: lil-319814

RESUMO

Cerebral ischemia causes cell death of vulnerable neurons in mammalian brain. Wistar adult rats (male and female, weighing 180-280 g) were submitted to 2 min, 10 min, or to 2 and 10 min (separated by a 24-h interval) of transient forebrain ischemia by the four-vessel occlusion method. Animals subjected to the longer ischemic episodes had massive necrosis of pyramidal CA1 cells of the hippocampus, while animals receiving double ischemia (2 + 10 min) showed neuronal tolerance to the ischemic insult. ATP-diphosphohydrolase activity from hippocampal synaptosomes was assayed in these three groups (N = 6 animals/group) under two conditions: no reperfusion and 5-min of reperfusion. The control values for ATPase and ADPase activities were 144.7 +/- 18.8 and 60.6 +/- 5.24 nmol Pi min-1 mg protein-1, respectively. The 10-min group without reperfusion showed an enhancement of approximately 20 for ATPase and ADPase activities. In reperfused rats, only the 2-min group had a 20 increase in both enzymatic activities. We suggest that modulation of ATP-diphosphohydrolase activity might be involved in molecular events that follow both ischemia and reperfusion.


Assuntos
Animais , Masculino , Feminino , Ratos , Apirase , Ataque Isquêmico Transitório/enzimologia , Hipocampo , Sinaptossomos , Adenosina Trifosfatases , Ratos Wistar , Reperfusão , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA