Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 6: 36691, 2016 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-27848977

RESUMO

We used Optically Stimulated Luminescence (OSL) from X-ray-irradiated sodium chloride nanocrystals to investigate how silver nanoparticle (AgNP) films enhanced luminescence. We controlled the emitter-AgNP distance and used the OSL intensity and decay times to explore the plasmonic interactions underlying the enhanced luminescence. Both intensity and decay times depended on the emitter-AgNP distance, which suggested that a mechanism involving energy transfer from the localized surface plasmons (LSPs) to the trapped electrons took place through a distance-dependent coupling. Compared to other plasmon-enhanced mechanisms, the energy transfer observed here occurred in the opposite bias: LSP relaxation stimulated electron transfer from non-optically active traps to optically active traps, which culminated in enhanced emission. Therefore, a different mechanism of plasmonic coupling converted optically unreachable electrons into useful luminescence information.

2.
Nanotechnology ; 27(1): 015503, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26606392

RESUMO

Gold nanoparticle (AuNP) films were sputtered over glass and aluminum substrates to enhance optically stimulated luminescence (OSL), a luminescent technique employed for radiation detection, from x-ray irradiated NaCl nanocrystals. The AuNP films deposited over glass led to enhanced-OSL emission, whereas the AuNP films deposited on aluminum substrates quenched the OSL emission. The enhanced-OSL intensity is proportional to the optical density of the film's plasmon resonance band at the stimulation wavelength. For the case of the AuNP/aluminum films, the luminescence quenching diminishes, and OSL intensity partially recovers upon increasing the distance between the AuNPs and the aluminum substrates, and between the luminescent nanocrystals and the AuNP films. These results suggest that plasmonic interactions between the emitter nanocrystals, the localized surface plasmons (LSP) of the AuNPs, and the substrate are responsible for the OSL enhancement and quenching. In this sense, the substrate dictates whether LSP relaxation occurs by radiative or non-radiative transisitions, leading to enhanced or quenched OSL, respectively. Therefore, besides showing that AuNP films can enhance and/or tune the sensitivity of luminescent radiation detectors, and demonstrating OSL as a new technique to investigate mechanisms of plasmon-enhanced luminescence, these results bring insights on how substrates strongly modify the optical properties of AuNP films.

3.
Med Phys ; 41(3): 032101, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24593736

RESUMO

PURPOSE: Noble metal nanoparticles have found several medical applications in the areas of radiation detection; x-ray contrast agents and cancer radiation therapy. Based on computational methods, many papers have reported the nanoparticle effect on the dose deposition in the surrounding medium. Here the authors report experimental results on how silver and gold nanoparticles affect the dose deposition in alanine dosimeters containing several concentrations of silver and gold nanoparticles, for five different beam energies, using electron spin resonance spectroscopy (ESR). METHODS: The authors produced alanine dosimeters containing several mass percentage of silver and gold nanoparticles. Nanoparticle sizes were measured by dynamic light scattering and by transmission electron microscopy. The authors determined the dose enhancement factor (DEF) theoretically, using a widely accepted method, and experimentally, using ESR spectroscopy. RESULTS: The DEF is governed by nanoparticle concentration, size, and position in the alanine matrix. Samples containing gold nanoparticles afford a DEF higher than 1.0, because gold nanoparticle size is homogeneous for all gold concentrations utilized. For samples containing silver particles, the silver mass percentage governs the nanoparticles size, which, in turns, modifies nanoparticle position in the alanine dosimeters. In this sense, DEF decreases for dosimeters containing large and segregated particles. The influence of nanoparticle size-position is more noticeable for dosimeters irradiated with higher beam energies, and dosimeters containing large and segregated particles become less sensitive than pure alanine (DEF < 1). CONCLUSIONS: ESR dosimetry gives the DEF in a medium containing metal nanoparticles, although particle concentration, size, and position are closely related in the system. Because this is also the case as in many real systems of materials containing inorganic nanoparticles, ESR is a valuable tool for investigating DEF. Moreover, these results alert to the importance of controlling the size-position of nanoparticles to enhance DEF.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Nanotecnologia/métodos , Radiometria/métodos , Prata/química , Alanina/química , Algoritmos , Meios de Contraste/química , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Método de Monte Carlo , Nanopartículas , Neoplasias/radioterapia , Tamanho da Partícula , Fótons , Software
4.
ACS Appl Mater Interfaces ; 4(11): 5844-51, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23067227

RESUMO

Radiation dose assessment is essential for several medical treatments and diagnostic procedures. In this context, nanotechnology has been used in the development of improved radiation sensors, with higher sensitivity as well as smaller sizes and energy dependence. This paper deals with the synthesis and characterization of gold/alanine nanocomposites with varying mass percentage of gold, for application as radiation sensors. Alanine is an excellent stabilizing agent for gold nanoparticles because the size of the nanoparticles does not augment with increasing mass percentage of gold, as evidenced by UV-vis spectroscopy, dynamic light scattering, and transmission electron microscopy. X-ray diffraction patterns suggest that the alanine crystalline orientation undergoes alterations upon the addition of gold nanoparticles. Fourier transform infrared spectroscopy indicates that there is interaction between the gold nanoparticles and the amine group of the alanine molecules, which may be the reason for the enhanced stability of the nanocomposite. The application of the nanocomposites as radiation detectors was evaluated by the electron spin resonance technique. The sensitivity is improved almost 3 times in the case of the nanocomposite containing 3% (w/w) gold, so it can be easily tuned by changing the amount of gold nanoparticles in the nanocomposites, without the size of the nanoparticles influencing the radiation absorption. In conclusion, the featured properties, such as homogeneity, nanoparticle size stability, and enhanced sensitivity, make these nanocomposites potential candidates for the construction of small-sized radiation sensors with tunable sensitivity for application in several medical procedures.


Assuntos
Alanina/química , Alanina/efeitos da radiação , Ouro/química , Ouro/efeitos da radiação , Nanopartículas/química , Nanopartículas/efeitos da radiação , Radiometria/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Estudos de Viabilidade , Doses de Radiação , Transdutores
5.
Nanoscale ; 4(9): 2884-93, 2012 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-22441754

RESUMO

Silver/alanine nanocomposites with varying mass percentage of silver have been produced. The size of the silver nanoparticles seems to drive the formation of the nanocomposite, yielding a homogeneous dispersion of the silver nanoparticles in the alanine matrix or flocs of silver nanoparticles segregated from the alanine crystals. The alanine crystalline orientation is modified according to the particle size of the silver nanoparticles. Concerning a mass percentage of silver below 0.1%, the nanocomposites are homogeneous, and there is no particle aggregation. As the mass percentage of silver is increased, the system becomes unstable, and there is particle flocculation with subsequent segregation of the alanine crystals. The nanocomposites have been analyzed by transmission electron microscopy (TEM), UV-Vis absorption spectroscopy, X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy and they have been tested as radiation detectors by means of electron spin resonance (ESR) spectroscopy in order to detect the paramagnetic centers created by the radiation. In fact, the sensitivity of the radiation detectors is optimized in the case of systems containing small particles (30 nm) that are well dispersed in the alanine matrix. As the agglomeration increases, particle growth (up to 1.5 µm) and segregation diminish the sensitivity. In conclusion, nanostructured materials can be used for optimization of alanine sensitivity, by taking into account the influence of the particles size of the silver nanoparticles on the detection properties of the alanine radiation detectors, thus contributing to the construction of small-sized detectors.


Assuntos
Alanina/química , Nanopartículas Metálicas/química , Tamanho da Partícula , Prata/química , Espectroscopia de Ressonância de Spin Eletrônica , Nanopartículas Metálicas/ultraestrutura , Poliestirenos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
6.
Artigo em Inglês | MEDLINE | ID: mdl-21803643

RESUMO

Colloidal silver nanoparticles were synthesized by an easy green method using thermal treatment of aqueous solutions of silver nitrate and natural rubber latex (NRL) extracted from Hevea brasiliensis. The UV-Vis spectra detected the characteristic surface plasmonic absorption band around 435 nm. Both NRL and AgNO(3) contents in the reaction medium have influence in the Ag nanoparticles formation. Lower AgNO(3) concentration led to decreased particle size. The silver nanoparticles presented diameters ranging from 2 nm to 100 nm and had spherical shape. The selected area electron diffraction (SAED) patterns indicated that the silver nanoparticles have face centered cubic (fcc) crystalline structure. FTIR spectra suggest that reduction of the silver ions are facilitated by their interaction with the amine groups from ammonia, which is used for conservation of the NRL, whereas the stability of the particles results from cis-isoprene binding onto the surface of nanoparticles. Therefore natural rubber latex extracted from H. brasiliensis can be employed in the preparation of stable aqueous dispersions of silver nanoparticles acting as a dispersing and/or capping agent. Moreover, this work provides a new method for the synthesis of silver nanoparticles that is simple, easy to perform, pollutant free and inexpensive.


Assuntos
Coloides/química , Química Verde/métodos , Hevea/metabolismo , Nanopartículas Metálicas/química , Extratos Vegetais/metabolismo , Prata/química , Amônia/química , Látex/metabolismo , Microscopia Eletrônica de Transmissão/métodos , Modelos Químicos , Nanotecnologia/métodos , Borracha , Nitrato de Prata/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA