Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
PLoS One ; 17(9): e0274791, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36112700

RESUMO

Galactinol synthase (GolS) catalyzes the first and rate-limiting step in the synthesis of raffinose family of oligosaccharides (RFOs), which serve as storage and transport sugars, signal transducers, compatible solutes and antioxidants in higher plants. The present work aimed to assess the potential functions of citrus GolS in mechanisms of stress response and tolerance. By homology searches, eight GolS genes were found in the genomes of Citrus sinensis and C. clementina. Phylogenetic analysis showed that there is a GolS ortholog in C. clementina for each C. sinensis GolS, which have evolved differently from those of Arabidopsis thaliana. Transcriptional analysis indicated that most C. sinensis GolS (CsGolS) genes show a low-level tissue-specific and stress-inducible expression in response to drought and salt stress treatments, as well as to 'Candidatus Liberibacter asiaticus' infection. CsGolS6 overexpression resulted in improved tobacco tolerance to drought and salt stresses, contributing to an increased mesophyll cell expansion, photosynthesis and plant growth. Primary metabolite profiling revealed no significant changes in endogenous galactinol, but different extents of reduction of raffinose in the transgenic plants. On the other hand, a significant increase in the levels of metabolites with antioxidant properties, such as ascorbate, dehydroascorbate, alfa-tocopherol and spermidine, was observed in the transgenic plants. These results bring evidence that CsGolS6 is a potential candidate for improving stress tolerance in citrus and other plants.


Assuntos
Arabidopsis , Citrus , Antioxidantes/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Citrus/genética , Citrus/metabolismo , Galactosiltransferases , Oligossacarídeos/metabolismo , Filogenia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Rafinose/metabolismo , Espermidina/metabolismo , Tocoferóis/metabolismo
2.
Appl Biochem Biotechnol ; 188(1): 29-42, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30288687

RESUMO

Considering bioethanol production, extensive research has been performed to decrease inhibitors produced during pretreatments, to diminish energy input, and to decrease costs. In this study, sugarcane bagasse was pretreated with NaOH, H2SO4, and water. The higher concentration of phenols, 3.3 g/L, was observed in biomass liquid fraction after alkaline pretreatment. Acid pretreatment was responsible to release considerable acetic acid concentration, 2.3 g/L, while water-based pretreatment was the only to release formic acid, 0.02 g/L. Furans derivatives were not detected in liquid fractions regardless of pretreatment. Furthermore, washing step removed most of the phenols from pretreated sugarcane bagasse. Saccharification of alkali-pretreated biomass plus polyethylene glycol (PEG) at 0.4% (w/v) enhanced 8 and 26% the glucose and the xylose release, respectively, while polyvinylpyrrolidone (PVP) also at 0.4% (w/v) increased the release by 10 and 31% of these sugars, respectively, even without washing and filtration steps. Moreover, these polymers cause above 50% activation of endoglucanase and xylanase activities which are crucial for biomass hydrolysis.


Assuntos
Ácidos/farmacologia , Metabolismo dos Carboidratos , Celulose/metabolismo , Furanos/farmacologia , Fenóis/farmacologia , Saccharum/efeitos dos fármacos , Álcalis/química , Celulase/metabolismo , Formiatos/química , Furanos/química , Glucose/metabolismo , Hidrólise , Polietilenoglicóis/química , Saccharum/metabolismo , Xilose/metabolismo
3.
Enzyme Microb Technol ; 109: 25-30, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29224623

RESUMO

Cellulase and hemicellulase activities in a 1:1 ratio of enzymes extracted from Chrysoporthe cubensis and Penicillium pinophilum were evaluated in the presence of known monocomponent phenolic inhibitors and also with phenol mixtures derived from alkali pretreated sugarcane bagasse. The cellulolytic activities from C. cubensis:P. pinophilum displayed a much higher tolerance to phenolic inhibitors than equivalent enzyme activities obtained from Trichoderma reesei and Aspergillus niger. Enzymes from T. reesei and A. niger were deactivated at 0.3 and 1.5mg phenols/mg protein, respectively, as reported previously, while enzymes from C. cubensis:P. pinophilum resisted deactivation at 35mg phenols/mg protein. However, tolerance of xylanase with respect to phenols required the presence of laccase. Removal of laccase (enzyme) activity using sodium azide resulted in a 2x higher xylanase deactivation (from 40% to 80%). This paper identifies enzymes that are phenol tolerant, and whose adoption for lignocellulose hydrolysis could contribute to reductions in enzyme loading needed to hydrolyze alkali pretreated lignocellulosic substrates in the presence of lignin derived phenols.


Assuntos
Ascomicetos/enzimologia , Proteínas Fúngicas/metabolismo , Lacase/metabolismo , Lignina/metabolismo , Penicillium/enzimologia , Ascomicetos/metabolismo , Celulase/metabolismo , Ativação Enzimática , Hidrólise
4.
Braz J Microbiol ; 46(1): 251-60, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26221114

RESUMO

An Aspergillus niger UFV-1 phytase was characterized and made available for industrial application. The enzyme was purified via ultrafiltration followed by acid precipitation, ion exchange and gel filtration chromatography. This protein exhibited a molecular mass of 161 kDa in gel filtration and 81 kDa in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), indicating that it may be a dimer. It presented an optimum temperature of 60 °C and optimum pH of 2.0. The K M for sodium phytate hydrolysis was 30.9 mM, while the k cat and k cat / K M were 1.46 ×10 (5) s (-1) and 4.7 × 10 (6) s (-1) .M (-1) , respectively. The purified phytase exhibited broad specificity on a range of phosphorylated compounds, presenting activity on sodium phytate, p-NPP, 2- naphthylphosphate, 1- naphthylphosphate, ATP, phenyl-phosphate, glucose-6-phosphate, calcium phytate and other substrates. Enzymatic activity was slightly inhibited by Mg (2+) , Cd (2+) , K (+) and Ca (2+) , and it was drastically inhibited by F (-) . The enzyme displayed high thermostability, retaining more than 90% activity at 60 °C during 120 h and displayed a t 1/2 of 94.5 h and 6.2 h at 70 °C and 80 °C, respectively. The enzyme demonstrated strong resistance toward pepsin and trypsin, and it retained more than 90% residual activity for both enzymes after 1 h treatment. Additionally, the enzyme efficiently hydrolyzed phytate in livestock feed, liberating 15.3 µmol phosphate/mL after 2.5 h of treatment.


Assuntos
6-Fitase/isolamento & purificação , 6-Fitase/metabolismo , Aspergillus niger/enzimologia , 6-Fitase/química , Precipitação Química , Cromatografia em Gel , Cromatografia por Troca Iônica , Eletroforese em Gel de Poliacrilamida , Inibidores Enzimáticos/análise , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Peso Molecular , Peptídeo Hidrolases/metabolismo , Ácido Fítico/metabolismo , Multimerização Proteica , Proteólise , Especificidade por Substrato , Temperatura , Ultrafiltração
5.
Braz. j. microbiol ; 46(1): 251-260, 05/2015. tab, graf
Artigo em Inglês | LILACS | ID: lil-748253

RESUMO

An Aspergillus niger UFV-1 phytase was characterized and made available for industrial application. The enzyme was purified via ultrafiltration followed by acid precipitation, ion exchange and gel filtration chromatography. This protein exhibited a molecular mass of 161 kDa in gel filtration and 81 kDa in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), indicating that it may be a dimer. It presented an optimum temperature of 60 °C and optimum pH of 2.0. The KM for sodium phytate hydrolysis was 30.9 mM, while the kcat and kcat/KM were 1.46 ×105 s−1 and 4.7 × 106 s−1.M−1, respectively. The purified phytase exhibited broad specificity on a range of phosphorylated compounds, presenting activity on sodium phytate, p-NPP, 2- naphthylphosphate, 1- naphthylphosphate, ATP, phenyl-phosphate, glucose-6-phosphate, calcium phytate and other substrates. Enzymatic activity was slightly inhibited by Mg2+, Cd2+, K+ and Ca2+, and it was drastically inhibited by F−. The enzyme displayed high thermostability, retaining more than 90% activity at 60 °C during 120 h and displayed a t1/2 of 94.5 h and 6.2 h at 70 °C and 80 °C, respectively. The enzyme demonstrated strong resistance toward pepsin and trypsin, and it retained more than 90% residual activity for both enzymes after 1 h treatment. Additionally, the enzyme efficiently hydrolyzed phytate in livestock feed, liberating 15.3 μmol phosphate/mL after 2.5 h of treatment.


Assuntos
/isolamento & purificação , /metabolismo , Aspergillus niger/enzimologia , /química , Precipitação Química , Cromatografia em Gel , Cromatografia por Troca Iônica , Eletroforese em Gel de Poliacrilamida , Estabilidade Enzimática , Inibidores Enzimáticos/análise , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Peso Molecular , Multimerização Proteica , Proteólise , Peptídeo Hidrolases/metabolismo , Ácido Fítico/metabolismo , Especificidade por Substrato , Temperatura , Ultrafiltração
6.
Braz. J. Microbiol. ; 46(1): 251-260, Jan.- Mar. 2015. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-481354

RESUMO

An Aspergillus niger UFV-1 phytase was characterized and made available for industrial application. The enzyme was purified via ultrafiltration followed by acid precipitation, ion exchange and gel filtration chromatography. This protein exhibited a molecular mass of 161 kDa in gel filtration and 81 kDa in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), indicating that it may be a dimer. It presented an optimum temperature of 60 °C and optimum pH of 2.0. The KM for sodium phytate hydrolysis was 30.9 mM, while the kcat and kcat/KM were 1.46 ×105 s−1 and 4.7 × 106 s−1.M−1, respectively. The purified phytase exhibited broad specificity on a range of phosphorylated compounds, presenting activity on sodium phytate, p-NPP, 2- naphthylphosphate, 1- naphthylphosphate, ATP, phenyl-phosphate, glucose-6-phosphate, calcium phytate and other substrates. Enzymatic activity was slightly inhibited by Mg2+, Cd2+, K+ and Ca2+, and it was drastically inhibited by F−. The enzyme displayed high thermostability, retaining more than 90% activity at 60 °C during 120 h and displayed a t1/2 of 94.5 h and 6.2 h at 70 °C and 80 °C, respectively. The enzyme demonstrated strong resistance toward pepsin and trypsin, and it retained more than 90% residual activity for both enzymes after 1 h treatment. Additionally, the enzyme efficiently hydrolyzed phytate in livestock feed, liberating 15.3 μmol phosphate/mL after 2.5 h of treatment.(AU)


Assuntos
6-Fitase/isolamento & purificação , 6-Fitase/metabolismo , /enzimologia , 6-Fitase/química , Precipitação Química , Cromatografia em Gel , Cromatografia por Troca Iônica , Eletroforese em Gel de Poliacrilamida
7.
Appl Biochem Biotechnol ; 172(5): 2412-24, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24390854

RESUMO

An extracellular ß-glucanase secreted by Kluyveromyces marxianus was identified for the first time. The optimal conditions for the production of this enzyme were evaluated by response surface methodology. The optimal conditions to produce ß-glucanase were a glucose concentration of 4% (w/v), a pH of 5.5, and an incubation temperature of 35 °C. Response surface methodology was also used to determine the pH and temperature required for the optimal enzymatic activity. The highest enzyme activity was obtained at a pH of 5.5 and a temperature of 55 °C. Furthermore, the enzyme was partially purified and sequenced, and its specificity for different substrates was evaluated. The results suggest that the enzyme is an endo-ß-1,3(4)-glucanase. After optimizing the conditions for ß-glucanase production, the culture supernatant was found to be effective in digesting the cell wall of the yeast Saccharomyces cerevisiae, showing the great potential of ß-glucanase in the biotechnological production of soluble ß-glucan.


Assuntos
Proteínas Fúngicas/biossíntese , Glicosídeo Hidrolases/biossíntese , Kluyveromyces/enzimologia , beta-Glucanas/metabolismo , Sequência de Aminoácidos , Parede Celular/metabolismo , Análise Fatorial , Fermentação , Proteínas Fúngicas/metabolismo , Glucose/metabolismo , Glicosídeo Hidrolases/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Dados de Sequência Molecular , Saccharomyces cerevisiae/química , Alinhamento de Sequência , Especificidade por Substrato , Temperatura
8.
Appl Biochem Biotechnol ; 172(3): 1332-46, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24170331

RESUMO

Enzymatic hydrolysis is an important but expensive step in the production of ethanol from biomass. Thus, the production of efficient enzymatic cocktails is of great interest for this biotechnological application. The production of endoglucanase and xylanase activites from F. verticillioides were optimized in a factorial design (2(5)) followed by a CCDR design. Endoglucanase and xylanase activities increased from 2.8 to 8.0 U/mL and from 13.4 to 114 U/mL, respectively. The optimal pH and temperature were determined for endoglucanase (5.6, 80 °C), cellobiase (5.6, 60 °C), FPase (6.0, 55 °C) and xylanase (7.0, 50 °C). The optimized crude extract was applied in saccharification and fermentation of sugarcane bagasse from which 9.7 g/L of ethanol was produced at an ethanol/biomass yield of 0.19.


Assuntos
Celulase/química , Endo-1,4-beta-Xilanases/química , Fusarium/enzimologia , Biomassa , Celulose/química , Etanol/química , Fermentação , Hidrólise , Saccharum/química
9.
Food Chem ; 146: 429-36, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24176363

RESUMO

An intracellular ß-glucosidase from Debaryomyceshansenii UFV-1 was produced in an YP medium with cellobiose as the carbon source. This enzyme was purified, characterised and presented a Mr of 65.15kDa. Yeast cells containing the intracellular ß-glucosidase were immobilised in calcium alginate. The free ß-glucosidase and immobilised cells containing the enzyme presented optima values of pH and temperature of 6.0 and 45°C and 5.5 and 50°C, respectively. The free enzyme maintained 62% and 47% of its original activity after 90days at 4°C and after 15days at room temperature, respectively. The immobilisation process resulted in higher enzyme thermostability at 45 and 50°C. Soy molasses treatment with the free enzyme and the immobilised cells containing ß-glucosidase, for 2h at 40°C, promoted efficient hydrolysis of isoflavone glicosides to their aglycon forms. The results suggest that this enzyme could be used in the food industry, in the free or immobilised forms, for a safe and efficient process to hydrolyse isoflavone glycosides in soy molasses.


Assuntos
Debaryomyces/enzimologia , Proteínas Fúngicas/metabolismo , Glycine max/metabolismo , Isoflavonas/metabolismo , beta-Glucosidase/metabolismo , Células Imobilizadas/química , Células Imobilizadas/enzimologia , Células Imobilizadas/metabolismo , Debaryomyces/química , Debaryomyces/metabolismo , Estabilidade Enzimática , Proteínas Fúngicas/química , Hidrólise , Isoflavonas/química , Cinética , Glycine max/química , beta-Glucosidase/química
10.
J Biotechnol ; 168(1): 71-7, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-23942376

RESUMO

Production of ethanol with two corn endophytic fungi, Fusarium verticillioides and Acremonium zeae, was studied. The yield of ethanol from glucose, xylose and a mixture of both sugars were 0.47, 0.46 and 0.50g/g ethanol/sugar for F. verticillioides and 0.37, 0.39 and 0.48g/g ethanol/sugar for A. zeae. Both fungi were able to co-ferment glucose and xylose. Ethanol production from 40g/L of pre-treated sugarcane bagasse was 4.6 and 3.9g/L for F. verticillioides and A. zeae, respectively, yielding 0.31g/g of ethanol per consumed sugar. Both fungi studied were capable of co-fermenting glucose and xylose at high yields. Moreover, they were able to produce ethanol directly from lignocellulosic biomass, demonstrating to be suitable microorganisms for consolidated bioprocessing.


Assuntos
Acremonium/metabolismo , Celulose/metabolismo , Etanol/metabolismo , Fusarium/metabolismo , Glucose/metabolismo , Saccharum/química , Xilose/metabolismo , Zea mays/microbiologia , Microbiologia Industrial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA