Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Antimicrob Agents Chemother ; 68(8): e0172123, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38990013

RESUMO

The use of ß-lactam/ß-lactamase inhibitors constitutes an important strategy to counteract ß-lactamases in multidrug-resistant (MDR) Gram-negative bacteria. Recent reports have described ceftazidime-/avibactam-resistant isolates producing CTX-M variants with different amino acid substitutions (e.g., P167S, L169Q, and S130G). Relebactam (REL) combined with imipenem has proved very effective against Enterobacterales producing ESBLs, serine-carbapenemases, and AmpCs. Herein, we evaluated the inhibitory efficacy of REL against CTX-M-96, a CTX-M-15-type variant. The CTX-M-96 structure was obtained in complex with REL at 1.03 Å resolution (PDB 8EHH). REL was covalently bound to the S70-Oγ atom upon cleavage of the C7-N6 bond. Compared with apo CTX-M-96, binding of REL forces a slight displacement of the deacylating water inwards the active site (0.81 Å), making the E166 and N170 side chains shift to create a proper hydrogen bonding network. Binding of REL also disturbs the hydrophobic patch formed by Y105, P107, and Y129, likely due to the piperidine ring of REL that creates clashes with these residues. Also, a remarkable change in the positioning of the N104 sidechain is also affected by the piperidine ring. Therefore, differences in the kinetic behavior of REL against class A ß-lactamases seem to rely, at least in part, on differences in the residues being involved in the association and stabilization of the inhibitor before hydrolysis. Our data provide the biochemical and structural basis for REL effectiveness against CTX-M-producing Gram-negative pathogens and essential details for further DBO design. Imipenem/REL remains an important choice for dealing with isolates co-producing CTX-M with other ß-lactamases.


Assuntos
Compostos Azabicíclicos , Inibidores de beta-Lactamases , beta-Lactamases , Compostos Azabicíclicos/farmacologia , Compostos Azabicíclicos/química , beta-Lactamases/genética , beta-Lactamases/metabolismo , beta-Lactamases/química , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/química , Cristalografia por Raios X , Antibacterianos/farmacologia , Imipenem/farmacologia , Imipenem/química , Ceftazidima/farmacologia , Testes de Sensibilidade Microbiana , Domínio Catalítico
2.
Antimicrob Agents Chemother ; : e0172023, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690895

RESUMO

The PER-2 ß-lactamase is a unique class A enzyme conferring broad spectrum cephalosporin resistance. In this study, we explored the stability of cefiderocol (FDC) against PER-2 ß-lactamase to gain insights into structure activity relationships (SAR) of this synthetic siderophore-conjugated antibiotic. Herein, we show that the MICs of FDC for PER-2 producing isolates and transformants ranged between 0.125 and 64 µg/mL; diazabicyclooctanes (DBOs) reduced the MIC values. In PER-2 mutants, MIC values decreased up to 10-12 dilutions in agreement with previous observations especially in the case of Arg220 substitutions. Catalytic efficiency for PER-2 was 0.072 µM-1 s-1, comparable with PER-1 (0.046 µM-1 s-1) and NDM-1 (0.067 µM-1 s-1). In silico models revealed that FDC within the active site of PER-2 demonstrates unique interactions as a result of the inverted Ω loop fold and extension of the ß3-ß4 connecting loop.

3.
J Glob Antimicrob Resist ; 37: 176-178, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38583573

RESUMO

OBJECTIVES: To describe at genomic level nine carbapenemase-producing Klebsiella pneumoniae ST307 (Kp-ST307) clinical isolates recovered in Buenos Aires during 2017 to 2021, investigating their resistome, virulome, and phylogeny. METHODS: Antimicrobial susceptibility was determined according to Clinical and Laboratory Standards Intitute (CLSI). Genomic DNA was sequenced by Illumina MiSeq and analysed using SPAdes, PROKKA, and Kleborate. Phylogeny of 355 randomly selected Kp-ST307 genomes and those from nine local isolates was inferred by a maximum-likelihood approach. The tree was visualized using Microreact. RESULTS: Besides resistance to ß-lactams and fluoroquinolones, six out of nine Kp-ST307 were also resistant to ceftazidime/avibactam (CZA). This difficult-to-treat resvistance phenotype was mediated by blaSHV-28 and GyrA-83I/ParC-80I mutations in addition to carbapenemase coding genes. Among CZA susceptible isolates, two of them harboured blaKPC-3 while the other harboured blaKPC-2+blaCTX-M-15. Regarding CZA-resistant isolates, three harboured blaKPC-3+blaNDM-1+blaCMY-6, two carried blaKPC-2+blaNDM-5+blaCTX-M-15, and blaNDM-5+blaCTX-M-15 were detected in the remaining isolate. Furthermore, five colistin-resistant isolates presented a nonsense mutation in mgrB. Global Kp-ST307 isolates were distributed in two deep-branching lineages while local isolates were set in the main clade of the phylogenetic tree. The five isolates from the same hospital, harbouring blaKPC-3 or blaKPC-3+blaNDM-1+blaCMY-6, clustered in a monophyletic subclade with Italian isolates. Also, an isolate harbouring blaKPC-2+blaNDM-5+blaCTX-M-15 recovered in another hospital was closed to this group. The remaining local Kp-ST307 were grouped in other subclades containing isolates of diverse geographical origin. CONCLUSION: The inferred resistome was consistent with the resistant phenotype. Phylogeny suggested multiple introduction events in our region and a single major introduction in one hospital followed by local spread.


Assuntos
Antibacterianos , Proteínas de Bactérias , Ceftazidima , Infecções por Klebsiella , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Filogenia , beta-Lactamases , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/classificação , Argentina , beta-Lactamases/genética , Proteínas de Bactérias/genética , Humanos , Infecções por Klebsiella/microbiologia , Antibacterianos/farmacologia , Ceftazidima/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Genoma Bacteriano , Compostos Azabicíclicos/farmacologia , Combinação de Medicamentos , Genômica , Sequenciamento Completo do Genoma
4.
Pathogens ; 13(2)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38392853

RESUMO

Achromobacter spp. are intrinsically resistant to multiple antibiotics and can also acquire resistance to those commonly used for the treatment of respiratory infections, especially in patients with cystic fibrosis. The aim of this study was to perform the genetic and biochemical characterization of AXC-2 from A. ruhlandii and to analyze all available AXC variants. Steady-state kinetic parameters were determined on a purified AXC-2 enzyme. It exhibited higher catalytic efficiencies towards amino-penicillins and older cephalosporins, while carbapenems behaved as poor substrates. Phylogenetic analysis of all blaAXC variants available in the NCBI was conducted. AXC was encoded in almost all A. ruhlandii genomes, whereas it was only found in 30% of A. xylosoxidans. AXC-1 was prevalent among A. xylosoxidans. AXC variants were clustered in two main groups, correlating with the Achromobacter species. No association could be established between the presence of blaAXC variants and a specific lineage of A. xylosoxidans; however, a proportion of AXC-1-producing isolates corresponded to ST 182 and ST 447. In conclusion, this study provides valuable insights into the genetic context and kinetic properties of AXC-2, identified in A. ruhlandii. It also provides a thorough description of all AXC variants and their association with Achromobacter species and various lineages.

5.
Microbiol Spectr ; : e0037423, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37671877

RESUMO

Two novel variants of Klebsiella pneumoniae carbapenemase (KPC) associated with resistance to ceftazidime-avibactam (CZA) and designated as KPC-113 and KPC-114 by NCBI were identified in 2020, in clinical isolates of Klebsiella pneumoniae in Brazil. While K. pneumoniae of ST16 harbored the blaKPC-113 variant on an IncFII-IncFIB plasmid, K. pneumoniae of ST11 carried the blaKPC-114 variant on an IncN plasmid. Both isolates displayed resistance to broad-spectrum cephalosporins, ß-lactam inhibitors, and ertapenem and doripenem, whereas K. pneumoniae producing KPC-114 showed susceptibility to imipenem and meropenem. Whole-genome sequencing and in silico analysis revealed that KPC-113 presented a Gly insertion between Ambler positions 264 and 265 (R264_A265insG), whereas KPC-114 displayed two amino acid insertions (Ser-Ser) between Ambler positions 181 and 182 (S181_P182insSS) in KPC-2, responsible for CZA resistance profiles. Our results confirm the emergence of novel KPC variants associated with resistance to CZA in international clones of K. pneumoniae circulating in South America. IMPORTANCE KPC-2 carbapenemases are endemic in Latin America. In this regard, in 2018, ceftazidime-avibactam (CZA) was authorized for clinical use in Brazil due to its significant activity against KPC-2 producers. In recent years, reports of resistance to CZA have increased in this country, limiting its clinical application. In this study, we report the emergence of two novel KPC-2 variants, named KPC-113 and KPC-114, associated with CZA resistance in Klebsiella pneumoniae strains belonging to high-risk clones ST11 and ST16. Our finding suggests that novel mutations in KPC-2 are increasing in South America, which is a critical issue deserving active surveillance.

6.
Pathogens ; 12(7)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37513712

RESUMO

Carbapenemase resistance in Enterobacterales is a global public health problem and rapid and effective methods for detecting these resistance mechanisms are needed urgently. Our aim was to evaluate the performance of a MALDI-TOF MS-based "Klebsiella pneumoniae carbapenemase" (KPC) detection protocol from patients' positive blood cultures, short-term cultures, and colonies in healthcare settings. Bacterial identification and KPC detection were achieved after protein extraction with organic solvents and target spot loading with suitable organic matrices. The confirmation of KPC production was performed using susceptibility tests and blaKPC amplification using PCR and sequencing. The KPC direct detection (KPC peak at approximately 28.681 Da) from patients' positive blood cultures, short-term cultures, and colonies, once bacterial identification was achieved, showed an overall sensibility and specificity of 100% (CI95: [95%, 100%] and CI95: [99%, 100%], respectively). The concordance between hospital routine bacterial identification protocol and identification using this new methodology from the same extract used for KPC detection was ≥92%. This study represents the pioneering effort to directly detect KPC using MALDI-TOF MS technology, conducted on patient-derived samples obtained from hospitals for validation purposes, in a multi-resistance global context that requires concrete actions to preserve the available therapeutic options and reduce the spread of antibiotic resistance markers.

7.
Antimicrob Agents Chemother ; 67(7): e0006123, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37272821

RESUMO

KPC-2 is one of the most relevant serine-carbapenemases among the carbapenem-resistant Enterobacterales. We previously isolated from the environmental species Chromobacterium haemolyticum a class A CRH-1 ß-lactamase displaying 69% amino acid sequence identity with KPC-2. The objective of this study was to analyze the kinetic behavior and crystallographic structure of this ß-lactamase. Our results showed that CRH-1 can hydrolyze penicillins, cephalosporins (except ceftazidime), and carbapenems with similar efficacy compared to KPC-2. Inhibition kinetics showed that CRH-1 is not well inhibited by clavulanic acid, in contrast to efficient inhibition by avibactam (AVI). The high-resolution crystal of the apoenzyme showed that CRH-1 has a similar folding compared to other class A ß-lactamases. The CRH-1/AVI complex showed that AVI adopts a chair conformation, stabilized by hydrogen bonds to Ser70, Ser237, Asn132, and Thr235. Our findings highlight the biochemical and structural similarities of CRH-1 and KPC-2 and the potential clinical impact of this carbapenemase in the event of recruitment by pathogenic bacterial species.


Assuntos
Proteínas de Bactérias , Escherichia coli , Escherichia coli/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , beta-Lactamases/metabolismo , Ceftazidima/farmacologia , Carbapenêmicos/farmacologia , Testes de Sensibilidade Microbiana , Compostos Azabicíclicos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Klebsiella pneumoniae , Combinação de Medicamentos
8.
Int J Antimicrob Agents ; 62(1): 106850, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37178777

RESUMO

The production of PER-like extended-spectrum ß-lactamases has recently been associated with reduced susceptibility to the last resort drugs aztreonam/avibactam and cefiderocol. PER-2 has been mainly confined to Argentina and neighboring countries. Until now, only three plasmids harboring blaPER-2 genes have been characterized but very little is known about the involvement of different plasmid groups in its dissemination. The diversity of genetic platforms associated with blaPER-2 genes from a collection of PER-producing Enterobacterales was analysed by describing the close environment and the plasmid backbones. Full sequences of 11 plasmids were obtained by short read (Illumina) and long read (Oxford Nanopore or PacBio) sequencing technologies. De novo assemblies, annotation and sequence analysis were performed by Unicycler, Prokka and BLAST. Plasmid analysis revealed that the blaPER-2 gene is encoded on plasmids of different incompatibility groups (A, C, FIB, HI1B, N2), indicating that this gene may have been disseminated through a variety of plasmids. Comparison with the few publicly available nucleotide sequences describing the blaPER-2 genetic environment, including those from the environmental species Pararheinheimera spp. (considered as the progenitor of blaPER genes), indicates a role of ISPa12 in blaPER-2 gene mobilization from the chromosome of Pararheinheimera spp. Also, the blaPER-2 gene was carried by a novel ISPa12-composite transposon, Tn7390. In addition, its association with ISKox2-like elements in the close genetic environment in all plasmids analysed suggests a role of these insertion sequence elements in further dissemination of blaPER-2 genes.


Assuntos
Antibacterianos , Chromatiaceae , Antibacterianos/farmacologia , beta-Lactamases/genética , beta-Lactamases/metabolismo , Plasmídeos/genética , Elementos de DNA Transponíveis/genética , Sequência de Bases , Chromatiaceae/genética
9.
Rev. argent. microbiol ; 54(4): 71-80, dic. 2022. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1422968

RESUMO

Abstract MDR Klebsiella pneumoniae ST307 is a high-risk clone, whose genetic features contribute to its adaptation to hospital environments and the human host. This study describesthe emergence and clonal dissemination of K. pneumoniae ST307, recovered during November2018 to February 2019 in a hospital in Buenos Aires city, which concurrently harbored KPC-3and NDM-1. These isolates were resistant to all -lactams and to the ceftazidime/avibactamcombination. Molecular studies showed that blaKPC-3was located in Tn4401a platform, whileblaNDM-1was surrounded upstream by ISKpn14 followed by a partial sequence of ISAba125 anddownstream by bleMBL-trpF, located in a 145.5 kb conjugative plasmid belonging to the Inc A/Cgroup. The dissemination of K. pneumoniae ST307 isolates co-producing KPC-3 and NDM-1 couldlead to a worrisome scenario due to the remarkable features of this clone and its resistanceprofile.


Resumen Klebsiella pneumoniae ST307 es un clon de alto riesgo, cuyas características genéticas contribuyen a su adaptación al entorno hospitalario y al huésped humano. Este estudio describe la emergencia y diseminación clonal de aislamientos de K. pneumoniae ST307 productores de KPC-3 y NDM-1, recuperados en un hospital de Buenos Aires. Estos aislamientos fueron resistentes a todos los p-lactámicos y a la combinación ceftacidima/avibactam. Los estudios moleculares evidenciaron que el contexto genético de blaKPC-3 se correspondió con el Tn4401a, mientras que blaNDM-1 estuvo flanqueado corriente arriba por ISKpn14 y una secuencia parcial de ISAba125 y corriente abajo por bleMBL - trpF, localizado a su vez en un plásmido conjugativo de 145.5 kb perteneciente al grupo Inc A/C. La emergencia de aislamientos de K. pneumoniae ST307 coproductores de KPC-3 y NDM-1 pone de manifiesto una situación altamente preocupante debido a las características de este clon y a su perfil de multirresistencia.

10.
Microbiol Spectr ; 10(6): e0373322, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36445147

RESUMO

We describe an outbreak of Klebsiella pneumoniae sequence type 11 (ST11) producing KPC variants resistant to ceftazidime-avibactam. Six patients hospitalized in the intensive care unit (mostly due to critical COVID pneumonia) presented infection or colonization by this bacterium. They had several comorbidities and required mechanical ventilation, central venous catheters, and urinary catheters. All 6 patients had a history of fecal colonization with KPC-producing Enterobacterales (KPC-E). Three of them had previous episodes of infection with ceftazidime-avibactam-susceptible KPC-producing K. pneumoniae, which were treated with ceftazidime-avibactam. Several phenotypic methods failed to detect carbapenemase production in these 6 ceftazidime-avibactam-resistant isolates, and they showed in vitro susceptibility to imipenem and meropenem. All of them rendered positive results for blaKPC by PCR, and amplicon sequencing identified blaKPC-31 variant in 5 isolates and a novel variant, named blaKPC-115, in the other. Moreover, matrix-assisted laser desorption ionization-time of flight mass spectrometry was able to detect KPC in all isolates. Ceftazidime-avibactam-resistant isolates, as well as those recovered from previous infection episodes (KPC-3-producing K. pneumoniae, ceftazidime-avibactam susceptible), displayed a unique pulse type and belonged to ST11. Based on whole-genome sequencing results of selected isolates, less than 7 single-nucleotide polymorphisms were identified among them, which was indicative of the presence of a unique clone. Both in vivo selection and horizontal transmission seemed to have occurred in our hospital. Detection of these strains is challenging for the laboratory. History of previous KPC-E infections or colonization and systematic testing for resistance to ceftazidime-avibactam might help raise awareness of this possibility. IMPORTANCE Klebsiella pneumoniae is one of the main bacteria that cause infections in health care settings. This pathogen has developed a high level of resistance to many antibiotics. Some K. pneumoniae isolates can produce an enzyme known as carbapenemase KPC, making carbapenems (considered the last line for therapy) not effective to treat their infections. The combination ceftazidime-avibactam, approved by FDA in 2015, is useful to treat infections caused by KPC-producing K. pneumoniae. This study describes the emergence, in one hospital in Argentina, of K. pneumoniae isolates that produce KPC variants (KPC-31 and KPC-115) resistant to ceftazidime-avibactam. The ceftazidime-avibactam-resistant bacteria were isolated in inpatients, including some that previously received this combination as treatment. Transmission of this strain to other patients also occurred in the studied period. Detection of these bacteria is challenging for the laboratory. The knowledge and awareness of the emergence of this pathogen in our region are highly valuable.


Assuntos
COVID-19 , Infecções por Klebsiella , Klebsiella pneumoniae , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Argentina/epidemiologia , Proteínas de Bactérias/genética , beta-Lactamases/genética , COVID-19/epidemiologia , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Pandemias , Farmacorresistência Bacteriana Múltipla
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA