Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bull Environ Contam Toxicol ; 86(5): 495-500, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21437785

RESUMO

Concentrations of vanadium, chromium, cobalt, nickel, copper, zinc, antimony, and lead were measured in Ficus benjamina leaves from the Mexico City urban area in order to assess their enrichment against background values. The instrumental analysis was performed using inductively coupled plasma mass spectrometry and the analytical method was tested using two certified reference materials from the National Institute of Standards and Technology (1547 Peach Leaves and 1573a Tomato Leaves). Enrichment factors were calculated, i.e., total to background concentration ratio, for each metal. Low enrichments of vanadium, cobalt, nickel, and copper (≈2), and mild enrichments of chromium and zinc (4.4, 4.5 respectively) were found in the entire area; oppositely, high enrichments were assessed for antimony (28.6) and lead (17.2). However, results indicate that metal concentrations strongly depend on the specific urban sub-area. Increments of metals were attributed to natural, vehicular, and industrial sources.


Assuntos
Poluentes Atmosféricos/metabolismo , Atmosfera/química , Ficus/metabolismo , Metais Pesados/metabolismo , Poluição do Ar/estatística & dados numéricos , Monitoramento Ambiental , México , Folhas de Planta/metabolismo
2.
Bull Environ Contam Toxicol ; 85(5): 520-4, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20936254

RESUMO

The environmental damage caused by industrial activities in Cromatos de México, (Tultitlán, México) has been evaluated in terms of heavy metal concentrations in topsoils of the surrounding area. The concentrations of lead, copper and zinc demonstrate a significant enrichment with respect to unpolluted levels. Their maximum enrichment factors are 37.7, 21.1 and 9.6 mg kg⁻¹, respectively; such increase is related to traffic emissions. Nickel concentrations show no significant difference in the analyzed samples. Total chromium concentrations show a significant decrease with distance from the industrial facilities, ranging from 15 to 1,837 mg kg⁻¹. The enrichment factors of chromium (total), with respect to the background values reach up to 40.8 mg kg⁻¹. In spite of this pronounced increase, only three analyzed samples show chromium (VI) concentrations over 0.5 mg kg⁻¹ (instrumental detection limit) and do not exceed the values recommended by the Mexican official norm. The current results show that the chromium present in the studied area does not represent serious health risks and environmental damage in the zone, nevertheless, it is necessary to consider that the oxidation of chromium (III) is determinate by changes in redox and/or pH conditions which would imply significant impacts upon its toxic risk. This study suggests that the waste material generated during the industrial activities of Cromatos de Mexico represents a relevant metal pollution source for the area even 30 years after the closure of the industrial facilities.


Assuntos
Monitoramento Ambiental , Metais Pesados/análise , Poluentes do Solo/análise , Solo/química , Cromo/análise , Cobre/análise , Chumbo/análise , México , Níquel/análise , Zinco/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA