Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 8(30): 19593-604, 2016 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-27387602

RESUMO

Persistent luminescence materials Lu2O3:R(3+),M (Pr,Hf(IV); Eu; or Tb,Ca(2+)) were successfully and rapidly (22 min) prepared by microwave-assisted solid-state synthesis (MASS) using a carbon microwave susceptor and H3BO3 as flux. Reaction times are reduced by up to 93% over previous synthetic methods, without special gases application and using a domestic microwave oven. All materials prepared with H3BO3 flux exhibit LuBO3 impurities that were quantified by Rietveld refinement from synchrotron radiation X-ray powder diffraction patterns. The flux does not considerably affect the crystalline structure of the C-Lu2O3, however. Scanning electron micrographs suggest low surface area when H3BO3 flux is used in the materials' synthesis, decreasing the amount of surface hydroxyl groups in Lu2O3 and improving the luminescence intensity of the phosphors. The carbon used as the susceptor generates CO gas, leading to complete reduction of Tb(IV) to Tb(3+) and partial conversion of Pr(IV) to Pr(3+) present in the Tb4O7 and Pr6O11 precursors, as indicated by X-ray absorption near-edge structure data. Persistent luminescence spectra of the materials show the red/near-IR, reddish orange, and green emission colors assigned to the 4f(n) → 4f(n) transitions characteristics of Pr(3+), Eu(3+), and Tb(3+) ions, respectively. Differences between the UV-excited and persistent luminescence spectra can be explained by the preferential persistent luminescence emission of R(3+) ion in the S6 site rather than R(3+) in the C2 site. In addition, inclusion of Hf(IV) and Ca(2+) codopants in the Lu2O3 host increases the emission intensity and duration of persistent luminescence due to generation of traps caused by charge compensation in the lattice. Photonic materials prepared by MASS with H3BO3 flux show higher persistent luminescence performance than those prepared by the ceramic method or MASS without flux. Color tuning of persistent luminescence in Lu2O3:R(3+),M provides potential applications in bioimaging as well as in solar cell sensitizers.

2.
Inorg Chem ; 53(24): 12902-10, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25475194

RESUMO

The design of bifunctional magnetic luminescent nanomaterials containing Fe3O4 functionalized with rare earth ion complexes of calixarene and ß-diketonate ligands is reported. Their preparation is accessible through a facile one-pot method. These novel Fe3O4@calix-Eu(TTA) (TTA = thenoyltrifluoroacetonate) and Fe3O4@calix-Tb(ACAC) (ACAC = acetylacetonate) magnetic luminescent nanomaterials show interesting superparamagnetic and photonic properties. The magnetic properties (M-H and ZFC/FC measurements) at temperatures of 5 and 300 K were explored to investigate the extent of coating and the crystallinity effect on the saturation magnetization values and blocking temperatures. Even though magnetite is a strong luminescence quencher, the coating of the Fe3O4 nanoparticles with synthetically functionalized rare earth complexes has overcome this difficulty. The intramolecular energy transfer from the T1 excited triplet states of TTA and ACAC ligands to the emitting levels of Eu(3+) and Tb(3+) in the nanomaterials and emission efficiencies are presented and discussed, as well as the structural conclusions from the values of the 4f-4f intensity parameters in the case of the Eu(3+) ion. These novel nanomaterials may act as the emitting layer for the red and green light for magnetic light-converting molecular devices (MLCMDs).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA