Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 18048, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31792227

RESUMO

Optimizing the intrinsic properties of magnetic nanoparticles for magnetic hyperthermia is of considerable concern. In addition, the heating efficiency of the nanoparticles can be substantially influenced by dipolar interactions. Since adequate control of the intrinsic properties of magnetic nanoparticles is not straightforward, experimentally studying the complex interplay between these properties and dipolar interactions affecting the specific loss power can be challenging. Substituting zinc in magnetite structure is considered as an elegant approach to tune its properties. Here, we present experimental and numerical simulation results of magnetic hyperthermia studies using a series of zinc-substituted magnetite nanoparticles (ZnxFe1-xFe2O4, x = 0.0, 0.1, 0.2, 0.3 and 0.4). All experiments were conducted in linear regime and the results were inferred based on the numerical simulations conducted in the framework of the linear response theory. The results showed that depending on the nanoparticles intrinsic properties, interparticle interactions can have different effects on the specific loss power. When dipolar interactions were strong enough to affect the heating efficiency, the parameter σ = KeffV/kBT (Keff is the effective anisotropy and V the volume of the particles) determined the type of the effect. Finally, the sample x = 0.1 showed a superior performance with a relatively high intrinsic loss power 5.4 nHm2kg-1.

2.
Phys Med Biol ; 64(21): 215019, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31539896

RESUMO

The shear wave dispersion magneto-motive ultrasound (SDMMUS) method was recently developed to analyze the mechanical properties of a viscoelastic medium. This technique is based on the interaction of magnetic nanoparticles (MNPs) with an external magnetic field to generate a shear wave within the medium labeled with MNPs. The propagation of this wave provides information about the viscoelastic properties of the medium. In a previous work by Arsalani et al (2018), magnetite NPs were synthesized by a co-precipitation method and coated with natural rubber latex (NRL). In order to investigate the effect of NRL on the size and magnetization of MNPs, varying amounts of NRL (zero, 100 µl, and 800 µl of a stock solution of NRL) were used during the synthesis process. The results showed that MNPs prepared with 800 µl of NRL, named as MNPs-800NRL, had the smallest size and highest magnetization. In the present paper, the main objective is to investigate whether MNPs-800NRL, having the highest magnetization, is also the best option for SDMMUS experiments among others. All experiments were performed using gelatin tissue-mimicking phantoms labeled with the aforementioned MNPs. The two factors of core size and magnetization were considered, and based on the observed results, the effect of magnetization was more prominent than that of the core size on the induced displacements. MNPs coated with a thicker NRL shell, having the highest magnetization value, enhanced the sensitivity and the signal to noise ratio in SDMMUS. Various concentrations of these optimized MNPs were also examined, to investigate the lowest possible concentration for observing shear waves in the SDMMUS technique.


Assuntos
Látex/química , Fenômenos Magnéticos , Nanopartículas de Magnetita/química , Borracha/química , Ondas Ultrassônicas , Gelatina
3.
Rev Sci Instrum ; 90(7): 074701, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31370463

RESUMO

In recent decades, magnetic hyperthermia using magnetic nanoparticles, a promising but quite challenging method, has proven to be an effective cancer therapy procedure. In hyperthermia, heat, which is generated by magnetic nanoparticles exposed to a radiofrequency magnetic field, is employed to battle cancerous cells. Ideally, devices for magnetic hyperthermia should provide a variety of field amplitudes and frequencies for generating an appropriate and powerful alternating magnetic field. Here, we report the design and evaluation of a versatile system which provides different experimental setup possibilities for magnetic hyperthermia. The proposed system is a derivative of the Mazzilli inverter, which directly follows the resonant frequency of the LC tank circuit independent of its component. The feasibility of the system for hyperthermia studies was examined using iron oxide nanoparticles prepared by the coprecipitation method. Different experimental conditions including nanoparticles in solution and dispersed in gelatin phantoms were evaluated. Four different coils including two solenoids, a pancake, and a Helmholtz-like format were successfully tested. Using these coils, 18 different operation frequencies in the frequency band of 63-530 kHz with field strengths up to 27.2 kA/m were achieved.


Assuntos
Hipertermia Induzida/instrumentação , Campos Magnéticos , Estudos de Viabilidade , Compostos Férricos/química , Nanopartículas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA