Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biotechnol Rep (Amst) ; 18: e00254, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29892569

RESUMO

Proteiniphilum saccharofermentans str. M3/6T is a recently described species within the family Porphyromonadaceae (phylum Bacteroidetes), which was isolated from a mesophilic laboratory-scale biogas reactor. The genome of the strain was completely sequenced and manually annotated to reconstruct its metabolic potential regarding biomass degradation and fermentation pathways. The P. saccharofermentans str. M3/6T genome consists of a 4,414,963 bp chromosome featuring an average GC-content of 43.63%. Genome analyses revealed that the strain possesses 3396 protein-coding sequences. Among them are 158 genes assigned to the carbohydrate-active-enzyme families as defined by the CAZy database, including 116 genes encoding glycosyl hydrolases (GHs) involved in pectin, arabinogalactan, hemicellulose (arabinan, xylan, mannan, ß-glucans), starch, fructan and chitin degradation. The strain also features several transporter genes, some of which are located in polysaccharide utilization loci (PUL). PUL gene products are involved in glycan binding, transport and utilization at the cell surface. In the genome of strain M3/6T, 64 PUL are present and most of them in association with genes encoding carbohydrate-active enzymes. Accordingly, the strain was predicted to metabolize several sugars yielding carbon dioxide, hydrogen, acetate, formate, propionate and isovalerate as end-products of the fermentation process. Moreover, P. saccharofermentans str. M3/6T encodes extracellular and intracellular proteases and transporters predicted to be involved in protein and oligopeptide degradation. Comparative analyses between P. saccharofermentans str. M3/6T and its closest described relative P. acetatigenes str. DSM 18083T indicate that both strains share a similar metabolism regarding decomposition of complex carbohydrates and fermentation of sugars.

2.
J Biotechnol ; 257: 178-186, 2017 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-28595834

RESUMO

The strictly anaerobic Peptoniphilaceae bacterium str. ING2-D1G (=DSM 28672=LMG 28300) was isolated from a mesophilic laboratory-scale completely stirred tank biogas reactor (CSTR) continuously co-digesting maize silage, pig and cattle manure. Based on 16S rRNA gene sequence comparison, the closest described relative to this strain is Peptoniphilus obesi ph1 showing 91.2% gene sequence identity. The most closely related species with a validly published name is Peptoniphilus indolicus DSM 20464T whose 16S rRNA gene sequence is 90.6% similar to the one of strain ING2-D1G. The genome of the novel strain was completely sequenced and manually annotated to reconstruct its metabolic potential regarding anaerobic digestion of biomass. The strain harbors a circular chromosome with a size of 1.6 Mb that contains 1466 coding sequences, 53 tRNA genes and 4 ribosomal RNA (rrn) operons. The genome carries a 28,261bp prophage insertion comprising 47 phage-related coding sequences. Reconstruction of fermentation pathways revealed that strain ING2-D1G encodes all enzymes for hydrogen, lactate and acetate production, corroborating that it is involved in the acido- and acetogenic phase of the biogas process. Comparative genome analyses of Peptoniphilaceae bacterium str. ING2-D1G and its closest relative Peptoniphilus obesi ph1 uncovered rearrangements, deletions and insertions within the chromosomes of both strains substantiating a divergent evolution. In addition to genomic analyses, a physiological and phenotypic characterization of the novel isolate was performed. Grown in Brain Heart Infusion Broth with added yeast extract, cells were spherical to ovoid, catalase- and oxidase-negative and stained Gram-positive. Optimal growth occurred between 35 and 37°C and at a pH value of 7.6. Fermentation products were acetate, butanoate and carbon dioxide.


Assuntos
Biocombustíveis/microbiologia , Reatores Biológicos/microbiologia , Clostridiales/classificação , Clostridiales/genética , Clostridiales/isolamento & purificação , Genoma Bacteriano , Filogenia , Animais , Técnicas de Tipagem Bacteriana , Sequência de Bases , Bovinos , Clostridiales/fisiologia , DNA Bacteriano , Ácidos Graxos/metabolismo , Fermentação , Genes Bacterianos/genética , Esterco/microbiologia , Redes e Vias Metabólicas , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Silagem/microbiologia , Suínos , Zea mays
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA