Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(47): e2213432119, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36378644

RESUMO

Cytochrome c (cyt c) can undergo reversible conformational changes under biologically relevant conditions. Revealing these alternative cyt c conformers at the cell and tissue level is challenging. A monoclonal antibody (mAb) identifying a key conformational change in cyt c was previously reported, but the hybridoma was rendered nonviable. To resurrect the mAb in a recombinant form, the amino-acid sequences of the heavy and light chains were determined by peptide mapping-mass spectrometry-bioinformatic analysis and used to construct plasmids encoding the full-length chains. The recombinant mAb (R1D3) was shown to perform similarly to the original mAb in antigen-binding assays. The mAb bound to a variety of oxidatively modified cyt c species (e.g., nitrated at Tyr74 or oxidized at Met80), which lose the sixth heme ligation (Fe-Met80); it did not bind to several cyt c phospho- and acetyl-mimetics. Peptide competition assays together with molecular dynamic studies support that R1D3 binds a neoepitope within the loop 40-57. R1D3 was employed to identify alternative conformations of cyt c in cells under oxidant- or senescence-induced challenge as confirmed by immunocytochemistry and immunoaffinity studies. Alternative conformers translocated to the nuclei without causing apoptosis, an observation that was further confirmed after pinocytic loading of oxidatively modified cyt c to B16-F1 cells. Thus, alternative cyt c conformers, known to gain peroxidatic function, may represent redox messengers at the cell nuclei. The availability and properties of R1D3 open avenues of interrogation regarding the presence and biological functions of alternative conformations of cyt c in mammalian cells and tissues.


Assuntos
Citocromos c , Heme , Animais , Sequência de Aminoácidos , Anticorpos Monoclonais , Citocromos c/química , Heme/química , Hibridomas , Oxirredução , Melanoma Experimental , Camundongos
2.
Am J Med Genet A ; 185(8): 2471-2476, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34031990

RESUMO

Gaucher disease (GD), one of the most common lysosomal disorders, is caused by deficiency of ß-glucocerebrosidase. Based on the presence and severity of neurological complications, GD is classified into types I, II (the most severe form), and III. Abnormalities in systemic markers of vitamin B12 (B12 ) metabolism have been reported in GD type I patients, suggesting a higher prevalence of B12 deficiency in these patients. A 2-month-old male with GD type II was admitted to the hospital presenting jaundice, hepatosplenomegaly, and ichthyosis. At admission, cholestasis and ascites, abnormal liver function enzymes, prolonged prothrombin time, and high levels of B12 were confirmed. Analysis of biomarkers of B12 status revealed elevated B12 and holo-transcobalamin (holo-TC) levels. The B12 profile found in our patient is the opposite to what is described for GD type I patients. Holo-TC may increase in inflammatory states or due to liver diseases. In GD, the accumulation of glucocerebroside may be a trigger that initiates a systemic inflammatory reaction, characterized by macrophage activation. We suggest higher levels of holo-TC could be associated with a more severe (neuronopathic) GD, and be a biomarker of GD type II.


Assuntos
Biomarcadores/sangue , Doença de Gaucher/sangue , Doença de Gaucher/diagnóstico , Transcobalaminas , Doença de Gaucher/genética , Glucosilceramidase/deficiência , Glucosilceramidase/genética , Humanos , Lactente , Masculino , Prognóstico , Avaliação de Sintomas , Transcobalaminas/metabolismo , Vitamina B 12/metabolismo
3.
BMC Med Genet ; 21(1): 12, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31931749

RESUMO

BACKGROUND: Gaucher disease (GD) is a lysosomal disorder caused by biallelic pathogenic mutations in the GBA1 gene that encodes beta-glucosidase (GCase), and more rarely, by a deficiency in the GCase activator, saposin C. Clinically, GD manifests with heterogeneous multiorgan involvement mainly affecting hematological, hepatic and neurological axes. This disorder is divided into three types, based on the absence (type I) or presence and severity (types II and III) of involvement of the central nervous system. At the cellular level, deficiency of GBA1 disturbs lysosomal storage with buildup of glucocerebroside. The consequences of disturbed lysosomal metabolism on biochemical pathways that require lysosomal processing are unknown. Abnormal systemic markers of cobalamin (Cbl, B12) metabolism have been reported in patients with GD, suggesting impairments in lysosomal handling of Cbl or in its downstream utilization events. METHODS: Cultured skin fibroblasts from control humans (n = 3), from patients with GD types I (n = 1), II (n = 1) and III (n = 1) and an asymptomatic carrier of GD were examined for their GCase enzymatic activity and lysosomal compartment intactness. Control human and GD fibroblasts were cultured in growth medium with and without 500 nM hydroxocobalamin supplementation. Cellular cobalamin status was examined via determination of metabolomic markers in cell lysate (intracellular) and conditioned culture medium (extracellular). The presence of transcobalamin (TC) in whole cell lysates was examined by Western blot. RESULTS: Cultured skin fibroblasts from GD patients exhibited reduced GCase activity compared to healthy individuals and an asymptomatic carrier of GD, demonstrating a preserved disease phenotype in this cell type. The concentrations of total homocysteine (tHcy), methylmalonic acid (MMA), cysteine (Cys) and methionine (Met) in GD cells were comparable to control levels, except in one patient with GD III. The response of these metabolomic markers to supplementation with hydroxocobalamin (HOCbl) yielded variable results. The content of transcobalamin in whole cell lysates was comparable in control human and GD patients. CONCLUSIONS: Our results indicate that cobalamin transport and cellular processing pathways are overall protected from lysosomal storage damage in GD fibroblasts. Extending these studies to hepatocytes, macrophages and plasma will shed light on cell- and compartment-specific vitamin B12 metabolism in Gaucher disease.


Assuntos
Doença de Gaucher/genética , Glucosilceramidase/genética , Vitamina B 12/metabolismo , beta-Glucosidase/genética , Técnicas de Cultura de Células , Feminino , Fibroblastos/metabolismo , Doença de Gaucher/metabolismo , Doença de Gaucher/patologia , Homocisteína/metabolismo , Humanos , Lisossomos/metabolismo , Lisossomos/patologia , Masculino , Ácido Metilmalônico/metabolismo , Mutação , Fenótipo , Saposinas/genética , Transcobalaminas/metabolismo
4.
Chem Rev ; 117(21): 13382-13460, 2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-29027792

RESUMO

Cytochrome c (cyt c) is a small soluble heme protein characterized by a relatively flexible structure, particularly in the ferric form, such that it is able to sample a broad conformational space. Depending on the specific conditions, interactions, and cellular localization, different conformations may be stabilized, which differ in structure, redox properties, binding affinities, and enzymatic activity. The primary function is electron shuttling in oxidative phosphorylation, and is exerted by the so-called native cyt c in the intermembrane mitochondrial space of healthy cells. Under pro-apoptotic conditions, however, cyt c gains cardiolipin peroxidase activity, translocates into the cytosol to engage in the intrinsic apoptotic pathway, and enters the nucleus where it impedes nucleosome assembly. Other reported functions include cytosolic redox sensing and involvement in the mitochondrial oxidative folding machinery. Moreover, post-translational modifications such as nitration, phosphorylation, and sulfoxidation of specific amino acids induce alternative conformations with differential properties, at least in vitro. Similar structural and functional alterations are elicited by biologically significant electric fields and by naturally occurring mutations of human cyt c that, along with mutations at the level of the maturation system, are associated with specific diseases. Here, we summarize current knowledge and recent advances in understanding the different structural, dynamic, and thermodynamic factors that regulate the primary electron transfer function, as well as alternative functions and conformations of cyt c. Finally, we present recent technological applications of this moonlighting protein.


Assuntos
Citocromos c/metabolismo , Animais , Técnicas Biossensoriais , Transporte de Elétrons , Humanos , Cinética , Mitocôndrias/enzimologia , Oxirredução , Termodinâmica
5.
J. inborn errors metab. screen ; 5: e160059, 2017. tab
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1090921

RESUMO

Abstract Untreated vitamin B12 deficiency manifests clinically with hematological abnormalities and combined degeneration of the spinal cord and polyneuropathy and biochemically with elevated homocysteine (Hcy) and methylmalonic acid (MMA). Vitamin B12 metabolism involves various cellular compartments including the lysosome, and a disruption in the lysosomal and endocytic pathways induces functional deficiency of this micronutrient. Gaucher disease (GD) is characterized by dysfunctional lysosomal metabolism brought about by mutations in the enzyme beta-glucocerebrosidase (Online Mendelian Inheritance in Man (OMIM): 606463; Enzyme Commission (EC) 3.2.1.45, gene: GBA1). In this study, we collected and examined available literature on the associations between GD, the second most prevalent lysosomal storage disorder in humans, and hampered vitamin B12 metabolism. Results from independent cohorts of patients show elevated circulating holotranscobalamin without changes in vitamin B12 levels in serum. Gaucher disease patients under enzyme replacement therapy present normal levels of Hcy and MMA. Although within the normal range, a significant increase in Hcy and MMA with normal serum vitamin B12 was documented in treated GD patients with polyneuropathy versus treated GD patients without polyneuropathy. Thus, a functional deficiency of vitamin B12 caused by disrupted lysosomal metabolism in GD is a plausible mechanism, contributing to the neurological form of the disorder but this awaits confirmation. Observational studies suggest that an assessment of vitamin B12 status prior to the initiation of enzyme replacement therapy may shed light on the role of vitamin B12 in the pathogenesis and progression of GD.

6.
Biochemistry ; 55(3): 407-28, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26720007

RESUMO

Cytochrome c (cyt c) is a cationic hemoprotein of ∼100 amino acid residues that exhibits exceptional functional versatility. While its primary function is electron transfer in the respiratory chain, cyt c is also recognized as a key component of the intrinsic apoptotic pathway, the mitochondrial oxidative protein folding machinery, and presumably as a redox sensor in the cytosol, along with other reported functions. Transition to alternative conformations and gain-of-peroxidase activity are thought to further enable the multiple functions of cyt c and its translocation across cellular compartments. In vitro, direct interactions of cyt c with cardiolipin, post-translational modifications such as tyrosine nitration, phosphorylation, methionine sulfoxidation, mutations, and even fine changes in electrical fields lead to a variety of conformational states that may be of biological relevance. The identification of these alternative conformations and the elucidation of their functions in vivo continue to be a major challenge. Here, we unify the knowledge of the structural flexibility of cyt c that supports functional moonlighting and review biochemical and immunochemical evidence confirming that cyt c undergoes conformational changes during normal and altered cellular homeostasis.


Assuntos
Citocromos c/química , Citocromos c/metabolismo , Animais , Cardiolipinas/química , Eletricidade , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Humanos , Espaço Intracelular/metabolismo , Fosfolipídeos/química , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Conformação Proteica , Dobramento de Proteína , Processamento de Proteína Pós-Traducional , Transporte Proteico
7.
Curr Alzheimer Res ; 13(2): 135-49, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26391043

RESUMO

The role of nitric oxide in the pathogenesis and progression of neurodegenerative illnesses such as Parkinson's and Alzheimer's diseases has become prominent over the years. Increased activity of the enzymes that produce reactive oxygen species, decreased activity of antioxidant enzymes and imbalances in glutathione pools mediate and mark the neurodegenerative process. Much of the oxidative damage of proteins is brought about by the overproduction of nitric oxide by nitric oxide synthases (NOS) and its subsequent reactivity with reactive oxygen species. Proteomic methods have advanced the field tremendously, by facilitating the quantitative assessment of differential expression patterns and oxidative modifications of proteins and alongside, mapping their non-canonical functions. As a signaling molecule involved in multiple biochemical pathways, the level of nitric oxide is subject to tight regulation. All three NOS isoforms display aberrant patterns of expression in Alzheimer's disease, altering intracellular signaling and routing oxidative stress in directions that are uncompounded. This review discusses the prime factors that control nitric oxide biosynthesis, reactivity footprints and ensuing effects in the development of neurodegenerative diseases.


Assuntos
Homeostase/fisiologia , Doenças Neurodegenerativas/metabolismo , Óxido Nítrico/metabolismo , Animais , Humanos , Estresse Oxidativo/fisiologia
8.
J Bacteriol ; 191(24): 7581-6, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19820082

RESUMO

The symbiotic nitrogen-fixing bacterium Sinorhizobium meliloti 1021 encodes only one predicted aconitase (AcnA) in its genome. AcnA has a significant degree of similarity with other bacterial aconitases that behave as dual proteins: enzymes and posttranscriptional regulators of gene expression. Similar to the case with these bacterial aconitases, AcnA activity was reversibly labile and was regained upon reconstitution with reduced iron. The aconitase promoter was active in root nodules. acnA mutants grew very poorly, had secondary mutations, and were quickly outgrown by pseudorevertants. The acnA gene was stably interrupted in a citrate synthase (gltA) null background, indicating that the intracellular accumulation of citrate may be deleterious for survival of strain 1021. No aconitase activity was detected in this mutant, suggesting that the acnA gene encodes the only functional aconitase of strain 1021. To uncover a function of AcnA beyond its catalytic role in the tricarboxylic acid cycle pathway, the gltA acnA double mutant was compared with the gltA single mutant for differences in motility, resistance to oxidative stress, nodulation, and growth on different substrates. However, no differences in any of these characteristics were found.


Assuntos
Aconitato Hidratase/genética , Proteínas de Bactérias/genética , Citrato (si)-Sintase/genética , Sinorhizobium meliloti/enzimologia , Sinorhizobium meliloti/crescimento & desenvolvimento , Aconitato Hidratase/metabolismo , Proteínas de Bactérias/metabolismo , Citrato (si)-Sintase/metabolismo , Citratos/metabolismo , Deleção de Genes , Histocitoquímica/métodos , Viabilidade Microbiana , Nódulos Radiculares de Plantas/microbiologia , Sinorhizobium meliloti/genética
9.
Free Radic Biol Med ; 41(3): 503-12, 2006 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16843831

RESUMO

The reduction of manganese(III) meso-tetrakis((N-ethyl)pyridinium-2-yl)porphyrin (MnTE-2-PyP) to manganese(II) was catalyzed by flavoenzymes such as xanthine oxidase and glucose oxidase, and by Complex I and Complex II of the mitochondrial electron transport chain. The reduced manganese porphyrin has been previously shown to react rapidly with superoxide and carbonate radical anion. Herein, we describe the reaction of a reduced manganese porphyrin with peroxynitrite that proceeds as a two-electron process, has a rate constant greater than 7 x 10(6) M(-1) s(-1) (at pH 7.25 and 37 degrees C), and produces nitrite and the Mn(IV)Porphyrin. The Mn(II)/Mn(IV) redox cycle was used to divert peroxynitrite from the inactivation of succinate dehydrogenase. In a typical experiment, 5 microM MnTE-2-PyP in the presence of excess succinate was able to protect the succinate dehydrogenase and succinate oxidase activities of submitochondrial particles challenged with a cumulative dose of 140 microM peroxynitrite infused in the course of 2 h. Other MnPorphyrins that are reduced more slowly do not provide as much protection underscoring the rate limiting character of the reduction step. The data presented here serve to rationalize the pharmacological action of MnPorphyrins as peroxynitrite reduction catalysts in vivo and opens avenues for the development of MnPorphyrins to protect mitochondria from oxidative damage.


Assuntos
Flavonoides/metabolismo , Metaloporfirinas/metabolismo , Mitocôndrias/metabolismo , Ácido Peroxinitroso/metabolismo , Animais , Catálise , Bovinos , Transporte de Elétrons , Flavonas , Oxirredução , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA